3-吲哚醇和色醇的催化不对称脱水芳基化反应——双吲哚取代的三芳基甲烷类化合物的不对称合成
收稿日期: 2017-11-27
修回日期: 2017-12-25
网络出版日期: 2018-01-03
基金资助
国家自然科学基金(No.21702077)、江苏省自然科学基金(No.BK20170227)和徐州市应用基础研究计划(No.KH17021)资助项目.
Catalytic Asymmetric Dehydrative Arylation of 3-Indolylmethanols with Tryptophols: Enantioselective Synthesis of Bisindolyl-Substituted Triarylmethanes
Received date: 2017-11-27
Revised date: 2017-12-25
Online published: 2018-01-03
Supported by
Project supported by the National Natural Science Foundation of China (No. 21702077), the Natural Science Foundation of Jiangsu Province (No. BK20170227), the Applied Fundamental Research Project of Xuzhou City (No. KH17021).
手性三芳基甲烷类骨架存在于许多具有生物活性的分子中,该类化合物的合成受到了化学工作者的广泛关注.实现了在手性磷酸催化下,结构普通的3-吲哚醇类化合物与色醇类化合物的不对称脱水芳基化反应,合成了一系列具有结构多样性的手性双吲哚取代的三芳基甲烷类化合物(产率可达80%,ee值可达88%).该反应是基于3-吲哚醇类化合物在手性磷酸催化下脱水生成活性离域正离子中间体,通过手性磷酸对该中间体和色醇类化合物的氢键以及离子对活化模式,实现对该反应立体控制.该反应的唯一副产物是水,环境友好;符合绿色化学的要求和当代有机化学的发展方向.此外该反应条件温和,底物适用性广,展示了有机小分子催化在合成手性三芳基甲烷类化合物中的巨大潜力.
伍平 , 吴迦勒 , 王静怡 , 梅光建 . 3-吲哚醇和色醇的催化不对称脱水芳基化反应——双吲哚取代的三芳基甲烷类化合物的不对称合成[J]. 有机化学, 2018 , 38(5) : 1251 -1260 . DOI: 10.6023/cjoc201711045
The chiral triarylmethane frameworks are featured in many biologically important molecules. As a result, the synthesis of chiral triarylmethanes has received tremendous attention from the chemists. Herein, we reported the chiral phosphoric acid catalyzed dehydrative arylation of 3-indolylmethanols with tryptophols, leading to the efficient synthesis of a series of structurally diversified chiral bisindolyl-substituted triarylmethanes in moderate to good yields (up to 80% yield) with acceptable enantioselectivities (up to 88% ee). The chiral phosphoric acid played an important role not only in the dehydration of 3-indolylmethanols, but also in the control of enantioselectivity via hydrogen-bonding and ion-pairing interactions. The only byproduct was water, indicating that this catalytic asymmetric dehydrative arylation reaction was environment-friendly and in accordance with the requirements of green chemistry. In addition, the mild reaction condition and wide substrate scope of the reaction have successfully demonstrated the great potential of organocatalysis in the chiral triarylmethanes.
Key words: triarylmethanes; organocatalysis; 3-indolylmethanols; tryptophols; green chemistry
[1] (a) Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetrahedron 2006, 62, 6731.
(b) Li, Z.; Wang, J.; Zhao, J.; Zhao, C.; Liu, X.; Yu, X. Chin. J. Org. Chem. 2014, 34, 485(in Chinese). (李中贤, 王俊伟, 赵俊宏, 赵灿方, 刘小培, 余学军, 有机化学, 2014, 34, 485.)
(c) Mondal, S.; Panda, G. RSC Adv. 2014, 4, 28317.
(d) Nambo, M.; Crudden, C. M. ACS Catal. 2015, 5, 4734.
[2] (a) Mason, C. D.; Nord, F. F. J. Org. Chem. 1951, 16, 722.
(b) Ghaisas, V. V.; Kane, B. J.; Nord, F. F. J. Org. Chem. 1958, 23, 560.
(c) Irie, M. J. Am. Chem. Soc. 1983, 105, 2078.
(d) Muthyala, R.; Katritzky, A. R.; Lan, X. F. Dyes Pigm. 1994, 25, 303.
[3] (a) de Jong, P. C.; van de Ven, J.; Nortier, H. W. R.; Maitimu-Smeele, I.; Donker, T. H.; Thijssen, J. H. H.; Slee, P. H. T. J.; Blankenstein, R. A. Cancer Res. 1997, 57, 2109.
(b) Goss, P. E.; Strasser, K. J. Clin. Oncol. 2001, 19, 881.
[4] Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289.
[5] Ellsworth, B. A.; Ewing, W. R.; Jurica, E. US 2011/0082165, 2011.
[6] (a) Cho, S. D.; Yoon, K.; Chintharlapalli, S.; Abdelrahim, M.; Lei, P.; Hamilton, S.; Khan, S.; Ramaiah, S. K.; Safe, S. Cancer Res. 2007, 67, 674.
(b) Paira, P.; Hazra, A.; Kumar, S.; Paira, R.; Sahu, K. B.; Naskar, S.; Saha, P.; Mondal, S.; Maity, A.; Banerjee, S.; Mondal, N. B. Bioorg. Med. Chem. Lett. 2009, 19, 4786.
(c) Kamal, A.; Srikanth, Y. V. V.; Khan, M. N. A.; Shaik, T. B.; Ashraf, M. Bioorg. Med. Chem. Lett. 2010, 20, 5229.
(d) Subba Reddy, B. V.; Rajeswari, N.; Sarangapani, M.; Prashanthi, Y.; Ganji, R. J.; Addlagatta, A. Bioorg. Med. Chem. Lett. 2012, 22, 2460.
(e) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Chem. Rev. 2010, 110, 2250.
[7] (a) Esquivias, J.; Gómez Arrayás, R.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 629.
(b) Zhang, J.; Bellomo, A.; Creamer, A. D.; Dreher, S. D.; Walsh, P. J. J. Am. Chem. Soc. 2012, 134, 13765.
(c) Zhou, Q.; Srinivas, H. D.; Dasgupta, S.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 3307.
(d) Ji, X.; Huang, T.; Wu, W.; Liang, F.; Cao, S. Org. Lett. 2015, 17, 5096.
(e) Xia, Y.; Chen, L.; Qu, P.; Ji, G.; Feng, S.; Xiao, Q.; Zhang, Y.; Wang, J. J. Org. Chem. 2016, 81, 10484.
(f) Liao, J.-Y.; Ni, Q.; Zhao, Y. Org. Lett. 2017, 19, 4074.
(g) Zhou, T.; Li, S.; Huang, B.; Li, C.; Zhao, Y.; Chen, J.; Chen, A.; Xiao, Y.; Liu, L.; Zhang, J. Org. Biomol. Chem. 2017, 15, 4941.
(h) Xia, Y.; Hu, F.; Xia, Y.; Liu, Z.; Ye, F.; Zhang, Y.; Wang, J. Synthesis 2017, 49, 1073.
(i) Wang, Y.; Zhang, C.; Wang, H.; Jiang, Y.; Du, X.; Xu, D. Adv. Synth. Catal. 2017, 359, 791.
[8] (a) Sun, F.-L.; Zheng, X.-J.; Gu, Q.; He, Q.-L.; You, S.-L. Eur. J. Org. Chem. 2010, 47.
(b) Taylor, B. L. H.; Harris, M. R.; Jarvo, E. R. Angew. Chem., Int. Ed. 2012, 51, 7790.
(c) Matthew, S. C.; Glasspoole, B. W.; Eisenberger, P.; Crudden, C. M. J. Am. Chem. Soc. 2014, 136, 5828.
(e) Zhuo, M.-H.; Jiang, Y.-J.; Fan, Y.-S.; Gao, Y.; Liu, S.; Zhang, S. Org. Lett. 2014, 16, 1096.
(f) Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134.
[9] (a) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501.
(b) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 647.
(c) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467.
(d) Kumar, R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 1121.
(e) Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2013, 113, 6905.
(f) Chen, L.; Yin, X.-P.; Wang, C.-H.; Zhou, J. Org. Biomol. Chem. 2014, 12, 6033.
(g) Dryzhakov, M.; Richmond, E.; Moran, J. Synthesis 2016, 48, 935.
(h) Huang, J.-Z.; Luo, S.-W.; Gong, L.-Z. Acta Chim. Sinica 2013, 71, 879(in Chinese). (黄建洲, 罗时玮, 龚流柱, 化学学报, 2013, 71, 879.)
(i) Song, J.; Guo, C.; Adele, A.; Yin, H.; Gong, L.-Z. Chem. Eur. J. 2013, 19, 3319.
(j) Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.
(k) Wang, P.-S.; Zhou, X.-L.; Gong, L.-Z. Org. Lett. 2014, 16, 976.
(l) Su, Y.-L.; Han, Z.-Y.; Li, Y.-H.; Gong, L.-Z. ACS Catal. 2017, 7, 7917.
(m) Song, J.; Chen, D.-F.; Gong, L.-Z. Natl. Sci. Rev. 2017, 4, 381.
[10] Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L. J.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
[11] (a) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498.
(b) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.
(c) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
[12] (a) Mei, G.-J.; Shi, F. J. Org. Chem. 2017, 82, 7695.
(b) Zhu, S.; Xu, B.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2016, 36, 1229(in Chinese). (朱帅, 徐鲁斌, 王亮, 肖建, 有机化学, 2016, 36, 1229.)
(c) Wang, L.; Chen, Y.-Y.; Xiao, J. Asian J. Org. Chem. 2014, 3, 1036.
[13] (a) Zhou, L. J.; Zhang, Y. C.; Zhao, J. J.; Shi, F.; Tu, S. J. J. Org. Chem. 2014, 79, 10390.
(b) Wang, X. X.; Liu, J.; Xu, L. B.; Hao, Z. H.; Wang, L.; Xiao, J. RSC Adv. 2015, 5, 101713.
(c) Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y. Green Chem. 2016, 18, 1032.
[14] (a) Sun, F.-L.; Zeng, M.; Gu, Q.; You, S.-L. Chem.-Eur. J. 2009, 15, 8709.
(b) Wang, S.-G.; Han, L.; Zeng, M.; Sun, F.-L.; Zhang, W.; You, S.-L. Org. Biomol. Chem. 2012, 10, 3202.
[15] Sun, X.-X.; Du, B.-X.; Zhang, H.-H.; Ji, L.; Shi, F. ChemCatChem 2015, 7, 1211.
[16] (a) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
(b) Stephens, D. E.; Larionov, O. V. Eur. J. Org. Chem. 2014, 3662.
(c) Ruchti, J.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 16756.
(d) Zhu, Y.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 111.
/
| 〈 |
|
〉 |