研究论文

以芳基亚磺酸钠为硫源合成炔硫醚和不对称二硫醚化合物

  • 林雅玫 ,
  • 易文斌
展开
  • 南京理工大学化工学院 南京 210094

收稿日期: 2017-11-21

  修回日期: 2017-12-17

  网络出版日期: 2018-01-10

基金资助

国家自然科学基金(Nos.21776138,21476116)、中央大学基础研究基金(No.30916011102)及江苏省青蓝计划和六大高峰人才资助项目.

A Route to Alkynyl Sulfides and Asymmetric Disulfides from Sodium Arylsulfiniate

  • Lin Yamei ,
  • Yi Wenbin
Expand
  • Chemical Engineering College, Nanjing University of Science & Technology, Nanjing 210094

Received date: 2017-11-21

  Revised date: 2017-12-17

  Online published: 2018-01-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21776138, 21476116), the Fundamental Research Funds for the Central Universities (No. 30916011102) and the Qing Lan and Six Talent Peaks in Jiangsu Province.

摘要

在水相碘/三苯基膦体系中,以无嗅、易操作的芳基亚磺酸钠为硫源,合成了炔硫醚和不对称硫醚化合物.该法相比于其他文献的方法,具有操作简单、无过渡金属参与、无需使用有机溶剂和产率高等优点.

本文引用格式

林雅玫 , 易文斌 . 以芳基亚磺酸钠为硫源合成炔硫醚和不对称二硫醚化合物[J]. 有机化学, 2018 , 38(5) : 1207 -1213 . DOI: 10.6023/cjoc201711036

Abstract

A new approach for the synthesis of alkynyl sulfides and asymmetric disulfides with odorless, easy-to-handle sodium arylsulfiniates as the sulfur source in I2/PPh3 aqueous system has been developed. Compared with reported approaches, this protocol provides several merits including simple procedures, free of transition-metal catalysts and organic solvent, and high yields.

参考文献

[1] (a) Guillerm, G.; Guillerm, D.; Vandenplas-Witkowki, C.; Rogniaux, H.; Carte, N.; Leize, E.; Van Dorsselaer, A.; De Clercq, E.; Lambert, C. J. Med. Chem. 2001, 44, 2743.
(b) Cruz-Monteagudo, M.; PhamThe, H.; Cordeiro, M. N.; Borges, F. Mol. Inf. 2010, 29, 303.
(c) Kumar, R.; Srivastava, R.; Singh, R. K.; Surolia, A.; Rao, D. N. Bioorg. Med. Chem. 2008, 16, 2276.
[2] (a) Feng, M.; Jiang, X. Chem. Commun. 2014, 50, 9690.
(b) Nicolaou, K. C.; Hughes, R.; Pfefferkorn, J. A.; Barluenga, S.; Roecker, A. J. Chem.-Eur. J. 2001, 7, 4280.
(c) Conway, T. T.; DeMaster, E. G.; Goon, D. J. W.; Shirota, F. N.; Nagasawa, H. T. J. Med. Chem. 1999, 42, 4016.
(d) Nicolaou, K. C.; Lu, M.; Totokotsopoulos, S.; Heretsch, P.; Giguère, D.; Sun, Y.-P.; Sarlah, D.; Nguyen, T. H.; Wolf, I. C.; Smee, D. F.; Day, C. W.; Bopp, S.; Winzeler, E. A. J. Am. Chem. Soc. 2012, 134, 17320.
(e) Chankhamjon, P.; Boettger-Schmidt, D.; Scherlach, K.; Urbansky, B.; Lackner, G.; Kalb, D.; Dahse, H.-M.; Hoffmeister, D.; Hertweck, C. Angew. Chem., Int. Ed. 2014, 53, 13409.
(f) Mohammadi, M. K.; Ghammamy, S.; Zarrinabadi, S.; Farjam, M. H.; Sabayan, B. Chin. J. Chem. 2010, 28, 2199.
[3] (a) Bouillon, J.-P.; Musyanovich, R.; Portella, C.; Shermolovich, Y. Eur. J. Org. Chem. 2001, 3625.
(b) Hilt, G.; Luers, S.; Harms, K. J. Org. Chem. 2004, 69, 624.
(c) Ding, S.; Jia, G.; Sun, J. Angew. Chem., Int. Ed. 2014, 53, 1877.
(d) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2001, 3, 91.
(e) Wang, G.; Guo, Y.; Lü, Y.; Wang, X. C.; Quan, Z. J. Chin. J. Org. Chem. 2016, 36, 1375(in Chinese). (王刚, 郭燕, 吕颖, 王喜存, 权正军, 有机化学, 2016, 36, 1375.)
(f) An, Y. N.; Li, J. X.; Li, M.; Li, C. S.; Yang, S. R. Chin. J. Org. Chem. 2017, 37, 720(in Chinese). (安艳妮, 李建晓, 李蒙, 李春生, 杨少容, 有机化学, 2017, 37, 720.)
(g) Saba, S.; Rafique, J.; Braga, A. L. Catal. Sci. Technol. 2016, 6, 3087.
(h) Vieira, A. A.; Azeredo, J. B.; Godoi, M.; Santi, C.; da Silva Júnior, E. N.; Braga, A. L. J. Org. Chem. 2015, 80, 2120.
[4] (a) Yang, J.; Cohen Stuart, M. A.; Kamperman, M. Chem. Soc. Rev. 2014, 43, 8271.
(b) Wommack, A. J.; Ziarek, J. J.; Tomaras, J.; Chileveru, H. R.; Zhang, Y.; Wagner, G.; Nolan, E. M. J. Am. Chem. Soc. 2014, 136, 13494.
(c) Ge, W. W.; Chen, J.; Zhang, Y.; Zong, L.; Zhang, M.; Dong, J. J. Chin. J. Org. Chem. 2017, 37, 2409(in Chinese). (葛巍巍, 陈静, 张也, 宗良, 张鸣, 董俊军, 有机化学, 2017, 37, 2409.)
[5] (a) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898.
(b) Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. Science 2002, 297, 590.
[6] (a) Doroszuk, J.; Musiejuk, M.; Demkowicz, S.; Rachon, J.; Witt, D. RSC Adv. 2016, 6, 105449.
(b) Takeda, H.; Shimada, S.; Ohnishi, S.; Nakanishi, F.; Matsuda, H. Tetrahedron Lett. 1998, 39, 3701.
[7] (a) Fang, Z.; He, W.; Cai, M.; Lin, Y.; Zhao, H. Tetrahedron Lett. 2015, 56, 6463.
(b) Arisawa, M.; Fujimoto, K.; Morinaka, S.; Yamaguchi, M. J. Am. Chem. Soc. 2005, 127, 12226.
(c) Braga, A. L.; Silviera, C. C.; Reckziegel, A.; Menezes, P. H. Tetrahedron Lett. 1993, 34, 8041.
(d) Bieber, L. W.; da Silva, M. F.; Menezes, P. H. Tetrahedron Lett. 2004, 45, 2735.
[8] Frei, R.; Wodrich, M. D.; Hari, D. P.; Borin, P.-A.; Chauvier, C.; Waser, J. J. Am. Chem. Soc. 2014, 136, 16563.
[9] (a) Ziegler, G. R.; Welch, C. A.; Orzech, C. E.; Kikkawa, S.; Miller, S. I. J. Am. Chem. Soc. 1963, 85, 1648.
(b) Marchueta, I.; Montenegro, E.; Panov, D.; Poch, M.; Verdaguer, X.; Moyano, A.; Pericas, M. A.; Riera, A. J. Org. Chem. 2001, 66, 6400.
(c) Ni, Z.; Wang, S.; Mao, H.; Pan, Y. Tetrahedron Lett. 2012, 53, 3907.
(d) Ochiai, M.; Nagaoka, T.; Sueda, T.; Yan, J.; Chen, D. W.; Miyamoto, K. Org. Biomol. Chem. 2003, 1, 1517.
[10] (a) Taniguchi, N. Tetrahedron 2017, 73, 2030.
(b) Field, L.; Buckman, J. D. J. Org. Chem. 1968, 33, 3865.
(c) Brzezinska, E.; Ternay, A. L. J. Org. Chem. 1994, 59, 8239.
(d) Zhao, R. Y.; Erickson, H. K.; Leece, B. A.; Reid, E. E.; Goldmacher, V. S.; Lambert, J. M.; Chari, R. V. J. J. Med. Chem. 2012, 55, 766.
(e) Sivaramakrishnan, S.; Keerthi, K.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 10830.
[11] Vandavasi, J. K.; Hu, W.-P.; Chen, C.-Y.; Wang, J.-J. Tetrahedron 2011, 67, 8895.
[12] Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc. 2003, 125, 6624.
[13] Xiao, X.; Feng, M.; Jiang, X. Chem. Commun. 2015, 51, 4208.
[14] (a) Xiao, X.; Feng, M.; Jiang, X. Angew. Chem., Int. Ed. 2016, 55, 14121.
(b) Dai, Z.; Xiao, X.; Jiang, X. Tetrahedron 2017, 73, 3702.
[15] (a) Lin, Y.-M.; Lu, G.-P.; Cai, C.; Yi, W.-B. Org. Lett. 2015, 17, 3310.
(b) Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100.
(c) Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. J. Org. Chem. 2017, 82, 382.
(d) Xu, Z.-B.; Lu, G.-P.; Cai, C. Org. Biomol. Chem. 2017, 15, 2804.
[16] Ni, Z.; Wang, S.; Mao, H.; Pan, Y. Tetrahedron Lett. 2012, 53, 3907.
[17] Yang, Y.; Dong, W.; Guo, Y.; Rioux, R. M. Green Chem. 2013, 15, 3170.
[18] Liu, F.; Yi, W. Org. Chem. Front. 2018, 5, 428.
[19] Peña, J.; Talavera, G.; Waldecker, B.; Alcarazo, M. Chem.-Eur. J. 2017, 23, 75.
[20] Han, M.; Lee, J. T.; Hahn, H.-G. Tetrahedron Lett. 2011, 52, 236.
[21] Bao, M.; Shimizu, M. Tetrahedron 2003, 59, 9655.
[22] Demkowicz, S.; Rachon, J.; Witt, D. Synthesis 2008, 350, 2033.
[23] Turos, E.; Revell, K. D.; Ramaraju, P.; Gergeres, D. A.; Greenhalgh, K.; Young, A.; Sathyanarayan, N.; Dickey, S.; Lim, D.; Alhamadsheh, M. M.; Reynolds, K. Bioorg. Med. Chem. 2008, 16, 6501.
[24] Hunter, R.; Caira, M.; Stellenboom, N. J. Org. Chem. 2006, 71, 8268.
[25] Tsutsumi, N.; Itoh, T.; Ohsawa, A. Chem. Pharm. Bull. 2000, 48, 1524.
[26] Benati, L.; Montevecchi, P. C.; Spagnolo, P. Tetrahedron Lett. 1986, 27, 1739.

文章导航

/