一个新颖南极微生物酯酶EST112-2的功能鉴定和在手性叔醇(S)-芳樟醇制备中的应用
收稿日期: 2017-12-17
修回日期: 2017-12-26
网络出版日期: 2018-01-18
基金资助
中国科学院战略性先导科技专项(No.XDA11030404)、广东省海洋渔业科技攻关与研发方向(No.A201701C12)、广州市科技计划(No.201510010012)和国家自然科学基金(No.21302199)资助项目.
Functional Characterization of a New Antarctic Microbial Esterase EST112-2 and Its Use in the Preparation of Chiral Tertiary Alcohol (S)-Linalool
Received date: 2017-12-17
Revised date: 2017-12-26
Online published: 2018-01-18
Supported by
Project supported by the Priority Research Program of the Chinese Academy of Sciences (No. XDA11030404), the Scientific and Technological Project of Ocean and Fishery from Guangdong Province (No. A201701C12), the Guangzhou Science and Technology Plan Projects (No. 201510010012) and the National Natural Science Foundation of China (No. 21302199).
手性叔醇是合成药物和一些香料产品的非常重要中间体.芳樟醇是叔醇的一种,不同构型的芳樟醇具有不同的香气.因此如何研发合适的制备方法以获得高光学纯度的芳樟醇等叔醇是急需解决的技术问题.生物酶催化合成符合绿色化学的理念,但是由于叔醇化学结构中的空间位阻影响,使用生物酶催化的拆分反应制备高光学纯度的叔醇比较困难.对来自南极微生物的一个新的酯酶EST112-2进行了功能鉴定,并将其作为合成手性芳樟醇的生物催化剂.EST112-2可以通过不对称水解乙酸芳樟酯获得(S)-芳樟醇.对反应的pH、温度、共溶剂、底物浓度、催化剂用量以及反应时间等参数进行优化,EST112-2制备的(S)-芳樟醇的光学纯度大于66%,得率超过72%.EST112-2制备的(S)-芳樟醇的光学纯度要远远高于以往报道.
邓盾 , 张云 , 孙爱君 , 赛克 , 胡云峰 . 一个新颖南极微生物酯酶EST112-2的功能鉴定和在手性叔醇(S)-芳樟醇制备中的应用[J]. 有机化学, 2018 , 38(5) : 1185 -1192 . DOI: 10.6023/cjoc201710019
Chiral tertiary alcohols (TAs) are key building blocks for the synthesis of many crucial flavor compounds and pharmaceuticals. The two enantiomers of tertiary alcohol, linalool, differ in odor. So, sustainable strategies for the manufacture of optically pure TAs represented by linalool, are highly desirable. But the enzymatic synthesis of chiral tertiary alcohols through kinetic resolution was not easily achieved, possibly because of the steric hindrance from the chemical structures of tertiary alcohols. Herein, we identified and functionally characterized a new microbial esterase EST112-2 from the antarctic sediments and utilized esterase EST112-2 as a green biocatalyst in the synthesis of chiral tertiary alcohol (S)-linalool through asymmetric hydrolysis of racemic linalyl acetate. Parameters such as pH, temperature, co-solvents, substrate concentrations, enzyme loading and reaction time were optimized for the kinetic resolutions. Desired chiral product (S)-linalool was finally obtained with an enantiomeric excess of over 66% and a yield of over 72% after process optimization. The enantiomeric excess of (S)-linalool prepared by esterase EST112-2 was much higher than that from previous reports.
[1] (a) Yao, G.; Haque, S.; Sha, L.; Kumaravel, G.; Wang, J.; Engber, T. M.; Whalley, E. T.; Conlon, P. R.; Chang, H.; Kiesman, W. F.; Petter, R. C. Biorg. Med. Chem. Lett. 2005, 15, 511.
(b) Friel, D. K.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 9942.
(c) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
[2] Frizzo, C. D.; Santos, A. C.; Paroul, N.; Serafini, L. A.; Dellacassa, E.; Lorenzo, D.; Moyna, P. Braz. Arch. Biol. Technol. 2000, 43, 313.
[3] (a) Thompson, A. S.; Corley, E. G.; Huntington, M. F.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36:8937.
(b) Gulick, R. M.; Ribaudo, H. J.; Shikuma, C. M.; Lustgarten, S.; Squires, K. E.; Meyer Ⅲ, W. A.; Acosta, E. P.; Schackman, B. R.; Pilcher, C. D.; Murphy, R. L.; Maher, W. E.; Witt, M. D.; Reichman, R. C.; Snyder, S.; Klingman, K. L.; Kuritzkes, D. R. N. Engl. J. Med. 2004, 350, 1850.
[4] Ishihara, Y.; Baran, P. S. Synlett 2010, 41, 1733.
[5] (a) Freires, I.; Denny, C.; Benso, B; de Alencar, S.; Rosalen, P. Molecules 2015, 20, 7329.
(b) Herman, A.; Tambor, K., Herman, A. Curr. Microbiol. 2016, 72, 165.
[6] Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. 1991, 30, 49.
[7] Adrio, J. L.; Demain, A. L. Biomolecules 2014, 4, 117.
[8] (a) Holt, J.; Arends, I. W. C. E.; Minnaard, A. J.; Hanefeld, U. Adv. Synth. Catal. 2007, 349, 1341.
(b) Kourist, R.; Bornscheuer, U. T. Appl. Microbiol. Biotechnol. 2011, 91, 505.
(c) Yan, Q. J.; Yang, S. Q.; Duan, X. J.; Xu, H. B.; Liu, Y.; Jiang, Z. Q. J. Mol. Catal. B:Enzym. 2014, 109, 76.
[9] Pogorevc, M.; Faber, K. J. Mol. Catal. B:Enzym. 2000, 10, 357.
[10] (a) Timmis, K. E. Handbook of Hydrocarbon and Lipid Microbiology, Eds.:McGenity, T. J.; van der Meer, J. R.; de Lorenzo, V.; Berlin, Heidelberg, 2010, p. 1099.
(b) Li, P. Y.; Chen, X. L.; Ji, P.; Li, C, Y.; Wang, P.; Zhang, Y.; Xie, B. B.; Qin, Q. L.; Su, H. N.; Zhou, B. C.; Zhang, Y. Z.; Zhang, X. Y. J. Biol. Chem. 2015, 290, 11188.
[11] (a) Helistö, P.; Korpela, T. Enzym. Microb. Technol. 1998, 23, 113.
(b) Kulkarni, N.; Gadre, R. V. J. Ind. Microbiol. Biotechnol. 2002, 28, 344.
[12] Fillat, A.; Romea, P.; Urpí, F.; Pastor, F. I. J.; Diaz, P. Appl. Microbiol. Biotechnol. 2014, 98, 4479.
[13] Bassegoda, A.; Fillat, A.; Pastor, F. I.; Diaz, P. Appl. Microbiol. Biotechnol. 2013, 97, 8559.
[14] Osprian, I.; Steinreiber, A.; Mischitz, M.; Faber, K. Biotechnol. Lett. 1996, 18, 1331.
[15] Pogorevc, M.; Strauss, T. U.; Hayn, M.; Faber, K. Monatsh. Chem. 2000, 131, 639.
[16] Winkler, U. K.; Stuckmann, M. J. Bacteriol. 1979, 138, 663.
[17] Chen, C. S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294.
/
〈 |
|
〉 |