综述与进展

重氮化合物参与的连续流动反应

  • 郜云鹏 ,
  • 王剑波
展开
  • a 北京大学化学与分子工程学院 生物有机与分子工程教育部重点实验室 北京分子科学国家实验室 北京 100871;
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032

收稿日期: 2017-12-20

  修回日期: 2018-01-22

  网络出版日期: 2018-02-06

基金资助

国家自然科学基金(No.21332002)和国家重点基础研究发展计划(973计划,No.2015CB856600)资助项目.

Continuous Flow Reaction of Diazo Compounds

  • Gao Yunpeng ,
  • Wang Jianbo
Expand
  • a Beijing National Laboratory of Molecular Sciences(BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2017-12-20

  Revised date: 2018-01-22

  Online published: 2018-02-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21332002) and the National Basic Research Program of China (973 Program, No. 2015CB856600).

摘要

重氮化合物是一种用途广泛的有机砌块,能够作为1,3-偶极子、亲核试剂以及卡宾前体参与到各种有机分子的构建之中.但重氮化合物潜在的毒性、不稳定性以及爆炸风险限制了它的应用潜力.连续流动技术在这一领域的应用能够有效保证反应的安全性,并为重氮化合物的大批量应用提供了可能.按照重氮化合物的种类分类,系统地归纳了近年来连续流动技术在重氮化合物参与的各种转化中的应用.

本文引用格式

郜云鹏 , 王剑波 . 重氮化合物参与的连续流动反应[J]. 有机化学, 2018 , 38(6) : 1275 -1291 . DOI: 10.6023/cjoc201712029

Abstract

Diazo compounds are versatile building blocks in organic synthesis. They are served as 1,3-dipoles, nucleophiles and carbene precursors in the construction of various organic molecules. However, the utility of diazo compounds is significantly limited by toxicity, instability and explosive potential. The application of continuous flow technology in this field could ensure the safety of these reactions. It also provides the possibility to utilize diazo compounds in a large scale. Categorized by the types of diazo compounds, the application of continuous flow technology in transformations of diazo compounds is systematically reviewed in this paper.

参考文献

[1] For selected reviews, see:(a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
(b) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds:From Cyclopropanes to Ylides, Wiley, New York, 1998.
(c) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
(d) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061.
(e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
(f) Qiu, D.; Qiu, M.; Ma, R.; Zhang, Y.; Wang, J. Acta Chim. Sinica 2016, 74, 472(in Chinese). (邱頔, 邱孟龙, 马戎, 张艳, 王剑波, 化学学报, 2016, 74, 472.)
(g) Liu, L.; Zhang, J. Chin. J. Org. Chem. 2017, 37, 1117(in Chinese). (刘路, 张俊良, 有机化学, 2017, 37, 1117.)
[2] (a) Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2011, 6, 1015.
(b) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2012, 41, 560.
(c) Barluenga, J.; Valdes, C. Angew. Chem., Int. Ed. 2011, 50, 7486.
(d) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
(e) Xia, Y.; Zhang, Y.; Wang, J. ACS Catal. 2013, 3, 2586.
(f) Liu, Z.; Wang, J. J. Org. Chem. 2013, 78, 10024.
(g) Barroso, R.; Cabal, M. P.; Valdes, C. Synthesis 2017, 49, 4434.
(h) Xia, Y.; Di, Q.; Wang J. Chem. Rev. 2017, 117, 13810.
[3] For selected reviews, see:(a) Noel, T.; Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010.
(b) Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849.
(c) Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2015, 54, 6688.
(d) Cambie, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noel, T. Chem. Rev. 2016, 116, 10276.
(e) Britton, J.; Raston, C. L. Chem. Soc. Rev. 2017, 46, 1250.
(f) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
[4] (a) Müller, S. T. R.; Wirth, T. ChemSusChem 2015, 8, 245.
(b) Deadman, B. J.; Collins, S. G.; Maguire, A. R. Chem.-Eur. J. 2015, 21, 2298.
(c) Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892.
[5] Archibald, T. G.; Barnard, J. C.; Reese, H. F. US 5854405, 1998[Chem. Abstr. 1999, 130, 83188].
[6] Proctor, L. D.; Warr, A. J. Org. Process Res. Dev. 2002, 6, 884.
[7] Ferstl, W. F.; Schwarzer, M. S.; Löbbecke, S. L. Chem. Ing. Tech. 2004, 76, 1326.
[8] Struempel, M.; Ondruschka, B.; Daute, R.; Stark, A. Green Chem. 2008, 10, 41.
[9] Maurya, R. A.; Park, C. P.; Lee, J. H.; Kim, D.-P. Angew. Chem., Int. Ed. 2011, 50, 5952.
[10] (a) Mastronardi, F.; Gutmann, B.; Kappe, C. O. Org. Lett. 2013, 15, 5590.
(b) Brzozowski, M.; O'Brien, M.; Ley, S. V.; Polyzos, A. Acc. Chem. Res. 2015, 48, 349.
[11] Pinho, V. D.; Gutmann, B.; Miranda, L. S. M.; de Souza, R. O. M. A.; Kappe, C. O. J. Org. Chem. 2014, 79, 1555.
[12] Pinho, V. D.; Gutmann, B.; Kappe, C. O. RSC Adv. 2014, 4, 37419.
[13] (a) Dallinger, D.; Pinho, V. D.; Gutmann, B.; Kappe, C. O. J. Org. Chem. 2016, 81, 5814.
(b) Garbarino, S.; Guerra, J.; Poechlauer, P.; Gutmann, B.; Kappe, C. O. J. Flow Chem. 2016, 6, 211.
(c) Dallinger, D.; Kappe, C. O. Nat. Protoc. 2017, 12, 2138.
[14] Rossi, E.; Woehl, P.; Maggini, M. Org. Process Res. Dev. 2012, 16, 1146.
[15] Lehmann, H. Green Chem. 2017, 19, 1449.
[16] Pollet, P.; Cope, E. D.; Kassner, M. K.; Charney, R.; Terett, S. H.; Richman, K. W.; Dubay, W.; Stringer, J.; Eckert, C. A.; Liotta, C. L. Ind. Eng. Chem. Res. 2009, 48, 7032.
[17] Martin, L. J.; Marzinzik, A. L.; Ley, S. V.; Baxendale, I. R. Org. Lett. 2011, 13, 320.
[18] (a) Mifune, Y.; Fuse, S.; Tanaka, H. J. Flow Chem. 2014, 4, 173.
(b) Fuse, S.; Otake, Y.; Mifune, Y.; Tanaka, H. Aust. J. Chem. 2015, 68, 1657.
[19] Audubert, C.; Gamboa Marin, O. J.; Lebel, H. Angew. Chem., Int. Ed. 2017, 56, 6294.
[20] Barluenga, J.; Tomas-Gamasa, M.; Aznar, F.; Valdes, C. Nat. Chem. 2009, 1, 494.
[21] Kupracz, L.; Kirschning, A. J. Flow Chem. 2012, 3, 11.
[22] Levesque, E.; Laporte, S. T.; Charette, A. B. Angew. Chem., Int. Ed. 2017, 56, 837.
[23] Rossi, E.; Carofiglio, T.; Venturi, A.; Ndobe, A.; Muccini, M.; Maggini, M. Energy Environ. Sci. 2011, 4, 725.
[24] Tran, D. N.; Battilocchio, C.; Lou, S.-B.; Hawkins, J. M.; Ley, S. V. Chem. Sci. 2015, 6, 1120.
[25] Battilocchio, C.; Feist, F.; Hafner, A.; Simon, M.; Tran, D. N.; Allwood, D. M.; Blakemore, D. C.; Ley, S. V. Nat. Chem. 2016, 8, 360.
[26] Roda, N. M.; Tran, D. N.; Battilocchio, C.; Labes, R.; Ingham, R. J.; Hawkins, J. M.; Ley, S. V. Org. Biomol. Chem. 2015, 13, 2550.
[27] Poh, J.-S.; Tran, D. N.; Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Angew. Chem., Int. Ed. 2015, 54, 7920.
[28] Poh, J.-S.; Makai, S.; vonKeutz, T.; Tran, D. N.; Battilocchio, C.; Pasau, P.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 1864.
[29] Majchrzak, M. W.; Bekhazi, M.; Tse-Sheepy, I.; Warkentin, J. J. Org. Chem. 1989, 54, 1842.
[30] Greb, A.; Poh, J.-S.; Greed, S.; Battilocchio, C.; Pasau, P.; Blakemore, D. C.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 16602.
[31] Delville, M. M. E.; van Hest, J. C. M.; Rutjes, F. P. J. T. Beilstein J. Org. Chem. 2013, 9, 1813.
[32] Maurya, R. A.; Min, K.-I.; Kim, D.-P. Green Chem. 2013, 16, 116.
[33] Müller, S. T. R.; Smith, D.; Hellier, P.; Wirth, T. Synlett 2014, 25, 871.
[34] Müller, S. T. R.; Hokamp, T.; Ehrmann, S.; Hellier, P.; Wirth, T. Chem.-Eur. J. 2016, 22, 11940.
[35] (a) Burguete, M. I.; Cornejo, A.; Garcia-Verdugo, E.; Garcia, J.; Gil, M. J.; Luis, S. V.; Martinez-Merino, V.; Mayoral, J. A.; Sokolova, M. Green Chem. 2007, 9, 1091.
(b) Aranda, C.; Cornejo, A.; Fraile, J. M.; Garcia-Verdugo, E.; Gil, M. J.; Luis, S. V.; Mayoral, J. A.; Martinez-Merino, V.; Ochoa, Z. Green Chem. 2011, 13, 983.
[36] Castano, B.; Gallo, E.; Cole-Hamilton, D. J.; Santo, V. D.; Psaro, R.; Caselli, A. Green Chem. 2014, 16, 3202.
[37] Maestre, L.; Ozkal, E.; Ayats, C.; Beltran, A.; Diaz-Requejo, M. M.; Perez, P. J.; Pericis, M. A. Chem. Sci. 2015, 6, 1510.
[38] Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. J. Org. Chem. 2010, 75, 8674.
[39] Zhang, X.; Stefanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455.
[40] (a) Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Chem.-Eur. J. 2011, 17, 9586.
(b) Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Tetrahedron 2013, 69, 2276.
[41] Nicolle, S. M.; Hayes, C. J.; Moody, C. J. Chem.-Eur. J. 2015, 21, 4576.
[42] Nicolle, S. M.; Nortcliffe, A.; Bartrum, H. E.; Lewis, W.; Hayes, C. J.; Moody, C. J. Chem.-Eur. J. 2017, 23, 13623.
[43] Rackl, D.; Yoo, C.-J.; Jones, C. W.; Davies, H. M. L. Org. Lett. 2017, 19, 3055.
[44] Müller, S. T. R.; Murat, A.; Maillos, D.; Lesimple, P.; Hellier, P.; Wirth, T. Chem.-Eur. J. 2015, 21, 7016.
[45] Müller, S. T. R.; Murat, A.; Hellier, P.; Wirth, T. Org. Process Res. Dev. 2016, 20, 495.
[46] Deadman, B. J.; O'Mahony, R. M.; Lynch, D.; Crowley, D. C.; Collins, S. G.; Maguire, A. R. Org. Biomol. Chem. 2016, 14, 3423.
[47] (a) McCaw, P. G.; Deadman, B. J.; Maguire, A. R.; Collins, S. G. J. Flow Chem. 2016, 6, 226.
(b) McCaw, P. G.; Buckley, N. M.; Eccles, K. S.; Lawrence, S. E.; Maguire, A. R.; Collins, S. G. J. Org. Chem. 2017, 82, 3666.
[48] Gerardy, R.; Winter, M.; Vizza, A.; Monbaliu, J.-C. M. React. Chem. Eng. 2017, 2, 149.
[49] Fuse, S.; Otake, Y.; Nakamura, H. Eur. J. Org. Chem. 2017, 44, 6466.
[50] Vaske, Y. S. M.; Mahoney, M. E.; Konopelski, J. P.; Rogow, D. L.; McDonald, W. J. J. Am. Chem. Soc. 2010, 132, 11379.
[51] Willumstad, T. P.; Haze, O.; Mak, X. Y.; Lam, T. Y.; Wang, Y.-P.; Danheiser, R. L. J. Org. Chem. 2013, 78, 11450.
[52] Li, M.-M.; Wei, Y.; Liu, J.; Chen, H.-W.; Lu, L.-Q.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139, 14707.
[53] Garbarino, S.; Protti, S.; Basso, A. Synthesis 2015, 47, 2385.
[54] Basso, A.; Banfi, L.; Garbarino, S.; Riva, R. Angew. Chem., Int. Ed. 2013, 52, 2096.
[55] Musio, B.; Mariani, F.; Sliwinski, E. P.; Kabeshov, M. A.; Odajima, H.; Ley, S. V. Synthesis 2016, 48, 3515.
[56] Takeda, K.; Oohara, T.; Shimada, N.; Nambu, H.; Hashimoto, S. Chem.-Eur. J. 2011, 17, 13992.
[57] Moschetta, E. G.; Negretti, S.; Chepiga, K. M.; Brunelli, N. A.; Labreche, Y.; Feng, Y.; Rezaei, F.; Lively, R. P.; Koros, W. J.; Davies, H. M. L.; Jones, C. W. Angew. Chem., Int. Ed. 2015, 54, 6470.
[58] Pasceri, R.; Bartrum, H. E.; Hayes, C. J.; Moody, C. J. Chem. Commun. 2012, 48, 12077.
[59] Fleming, G. S.; Beeler, A. B. Org. Lett. 2017, 19, 5268.
[60] Pieber, B.; Kappe, C. O. Org. Lett. 2016, 18, 1076.
[61] Mertens, L.; Hock, K. J.; Koenigs, R. M. Chem.-Eur. J. 2016, 22, 9542.
[62] Hock, K. J.; Mertens, L.; Metze, F. K.; Schmittmann, C.; Koenigs, R. M. Green Chem. 2017, 19, 905.
[63] Hock, K. J.; Mertens, L.; Koenigs, R. M. Chem. Commun. 2016, 52, 13783.
[64] Britton, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2017, 56, 8823.

文章导航

/