重氮化合物参与的连续流动反应
收稿日期: 2017-12-20
修回日期: 2018-01-22
网络出版日期: 2018-02-06
基金资助
国家自然科学基金(No.21332002)和国家重点基础研究发展计划(973计划,No.2015CB856600)资助项目.
Continuous Flow Reaction of Diazo Compounds
Received date: 2017-12-20
Revised date: 2018-01-22
Online published: 2018-02-06
Supported by
Project supported by the National Natural Science Foundation of China (No. 21332002) and the National Basic Research Program of China (973 Program, No. 2015CB856600).
郜云鹏 , 王剑波 . 重氮化合物参与的连续流动反应[J]. 有机化学, 2018 , 38(6) : 1275 -1291 . DOI: 10.6023/cjoc201712029
Diazo compounds are versatile building blocks in organic synthesis. They are served as 1,3-dipoles, nucleophiles and carbene precursors in the construction of various organic molecules. However, the utility of diazo compounds is significantly limited by toxicity, instability and explosive potential. The application of continuous flow technology in this field could ensure the safety of these reactions. It also provides the possibility to utilize diazo compounds in a large scale. Categorized by the types of diazo compounds, the application of continuous flow technology in transformations of diazo compounds is systematically reviewed in this paper.
Key words: diazo compound; flow chemistry; microreactor; organic synthesis
[1] For selected reviews, see:(a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
(b) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds:From Cyclopropanes to Ylides, Wiley, New York, 1998.
(c) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
(d) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061.
(e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
(f) Qiu, D.; Qiu, M.; Ma, R.; Zhang, Y.; Wang, J. Acta Chim. Sinica 2016, 74, 472(in Chinese). (邱頔, 邱孟龙, 马戎, 张艳, 王剑波, 化学学报, 2016, 74, 472.)
(g) Liu, L.; Zhang, J. Chin. J. Org. Chem. 2017, 37, 1117(in Chinese). (刘路, 张俊良, 有机化学, 2017, 37, 1117.)
[2] (a) Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2011, 6, 1015.
(b) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2012, 41, 560.
(c) Barluenga, J.; Valdes, C. Angew. Chem., Int. Ed. 2011, 50, 7486.
(d) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
(e) Xia, Y.; Zhang, Y.; Wang, J. ACS Catal. 2013, 3, 2586.
(f) Liu, Z.; Wang, J. J. Org. Chem. 2013, 78, 10024.
(g) Barroso, R.; Cabal, M. P.; Valdes, C. Synthesis 2017, 49, 4434.
(h) Xia, Y.; Di, Q.; Wang J. Chem. Rev. 2017, 117, 13810.
[3] For selected reviews, see:(a) Noel, T.; Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010.
(b) Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849.
(c) Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2015, 54, 6688.
(d) Cambie, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noel, T. Chem. Rev. 2016, 116, 10276.
(e) Britton, J.; Raston, C. L. Chem. Soc. Rev. 2017, 46, 1250.
(f) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
[4] (a) Müller, S. T. R.; Wirth, T. ChemSusChem 2015, 8, 245.
(b) Deadman, B. J.; Collins, S. G.; Maguire, A. R. Chem.-Eur. J. 2015, 21, 2298.
(c) Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892.
[5] Archibald, T. G.; Barnard, J. C.; Reese, H. F. US 5854405, 1998[Chem. Abstr. 1999, 130, 83188].
[6] Proctor, L. D.; Warr, A. J. Org. Process Res. Dev. 2002, 6, 884.
[7] Ferstl, W. F.; Schwarzer, M. S.; Löbbecke, S. L. Chem. Ing. Tech. 2004, 76, 1326.
[8] Struempel, M.; Ondruschka, B.; Daute, R.; Stark, A. Green Chem. 2008, 10, 41.
[9] Maurya, R. A.; Park, C. P.; Lee, J. H.; Kim, D.-P. Angew. Chem., Int. Ed. 2011, 50, 5952.
[10] (a) Mastronardi, F.; Gutmann, B.; Kappe, C. O. Org. Lett. 2013, 15, 5590.
(b) Brzozowski, M.; O'Brien, M.; Ley, S. V.; Polyzos, A. Acc. Chem. Res. 2015, 48, 349.
[11] Pinho, V. D.; Gutmann, B.; Miranda, L. S. M.; de Souza, R. O. M. A.; Kappe, C. O. J. Org. Chem. 2014, 79, 1555.
[12] Pinho, V. D.; Gutmann, B.; Kappe, C. O. RSC Adv. 2014, 4, 37419.
[13] (a) Dallinger, D.; Pinho, V. D.; Gutmann, B.; Kappe, C. O. J. Org. Chem. 2016, 81, 5814.
(b) Garbarino, S.; Guerra, J.; Poechlauer, P.; Gutmann, B.; Kappe, C. O. J. Flow Chem. 2016, 6, 211.
(c) Dallinger, D.; Kappe, C. O. Nat. Protoc. 2017, 12, 2138.
[14] Rossi, E.; Woehl, P.; Maggini, M. Org. Process Res. Dev. 2012, 16, 1146.
[15] Lehmann, H. Green Chem. 2017, 19, 1449.
[16] Pollet, P.; Cope, E. D.; Kassner, M. K.; Charney, R.; Terett, S. H.; Richman, K. W.; Dubay, W.; Stringer, J.; Eckert, C. A.; Liotta, C. L. Ind. Eng. Chem. Res. 2009, 48, 7032.
[17] Martin, L. J.; Marzinzik, A. L.; Ley, S. V.; Baxendale, I. R. Org. Lett. 2011, 13, 320.
[18] (a) Mifune, Y.; Fuse, S.; Tanaka, H. J. Flow Chem. 2014, 4, 173.
(b) Fuse, S.; Otake, Y.; Mifune, Y.; Tanaka, H. Aust. J. Chem. 2015, 68, 1657.
[19] Audubert, C.; Gamboa Marin, O. J.; Lebel, H. Angew. Chem., Int. Ed. 2017, 56, 6294.
[20] Barluenga, J.; Tomas-Gamasa, M.; Aznar, F.; Valdes, C. Nat. Chem. 2009, 1, 494.
[21] Kupracz, L.; Kirschning, A. J. Flow Chem. 2012, 3, 11.
[22] Levesque, E.; Laporte, S. T.; Charette, A. B. Angew. Chem., Int. Ed. 2017, 56, 837.
[23] Rossi, E.; Carofiglio, T.; Venturi, A.; Ndobe, A.; Muccini, M.; Maggini, M. Energy Environ. Sci. 2011, 4, 725.
[24] Tran, D. N.; Battilocchio, C.; Lou, S.-B.; Hawkins, J. M.; Ley, S. V. Chem. Sci. 2015, 6, 1120.
[25] Battilocchio, C.; Feist, F.; Hafner, A.; Simon, M.; Tran, D. N.; Allwood, D. M.; Blakemore, D. C.; Ley, S. V. Nat. Chem. 2016, 8, 360.
[26] Roda, N. M.; Tran, D. N.; Battilocchio, C.; Labes, R.; Ingham, R. J.; Hawkins, J. M.; Ley, S. V. Org. Biomol. Chem. 2015, 13, 2550.
[27] Poh, J.-S.; Tran, D. N.; Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Angew. Chem., Int. Ed. 2015, 54, 7920.
[28] Poh, J.-S.; Makai, S.; vonKeutz, T.; Tran, D. N.; Battilocchio, C.; Pasau, P.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 1864.
[29] Majchrzak, M. W.; Bekhazi, M.; Tse-Sheepy, I.; Warkentin, J. J. Org. Chem. 1989, 54, 1842.
[30] Greb, A.; Poh, J.-S.; Greed, S.; Battilocchio, C.; Pasau, P.; Blakemore, D. C.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 16602.
[31] Delville, M. M. E.; van Hest, J. C. M.; Rutjes, F. P. J. T. Beilstein J. Org. Chem. 2013, 9, 1813.
[32] Maurya, R. A.; Min, K.-I.; Kim, D.-P. Green Chem. 2013, 16, 116.
[33] Müller, S. T. R.; Smith, D.; Hellier, P.; Wirth, T. Synlett 2014, 25, 871.
[34] Müller, S. T. R.; Hokamp, T.; Ehrmann, S.; Hellier, P.; Wirth, T. Chem.-Eur. J. 2016, 22, 11940.
[35] (a) Burguete, M. I.; Cornejo, A.; Garcia-Verdugo, E.; Garcia, J.; Gil, M. J.; Luis, S. V.; Martinez-Merino, V.; Mayoral, J. A.; Sokolova, M. Green Chem. 2007, 9, 1091.
(b) Aranda, C.; Cornejo, A.; Fraile, J. M.; Garcia-Verdugo, E.; Gil, M. J.; Luis, S. V.; Mayoral, J. A.; Martinez-Merino, V.; Ochoa, Z. Green Chem. 2011, 13, 983.
[36] Castano, B.; Gallo, E.; Cole-Hamilton, D. J.; Santo, V. D.; Psaro, R.; Caselli, A. Green Chem. 2014, 16, 3202.
[37] Maestre, L.; Ozkal, E.; Ayats, C.; Beltran, A.; Diaz-Requejo, M. M.; Perez, P. J.; Pericis, M. A. Chem. Sci. 2015, 6, 1510.
[38] Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. J. Org. Chem. 2010, 75, 8674.
[39] Zhang, X.; Stefanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455.
[40] (a) Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Chem.-Eur. J. 2011, 17, 9586.
(b) Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Tetrahedron 2013, 69, 2276.
[41] Nicolle, S. M.; Hayes, C. J.; Moody, C. J. Chem.-Eur. J. 2015, 21, 4576.
[42] Nicolle, S. M.; Nortcliffe, A.; Bartrum, H. E.; Lewis, W.; Hayes, C. J.; Moody, C. J. Chem.-Eur. J. 2017, 23, 13623.
[43] Rackl, D.; Yoo, C.-J.; Jones, C. W.; Davies, H. M. L. Org. Lett. 2017, 19, 3055.
[44] Müller, S. T. R.; Murat, A.; Maillos, D.; Lesimple, P.; Hellier, P.; Wirth, T. Chem.-Eur. J. 2015, 21, 7016.
[45] Müller, S. T. R.; Murat, A.; Hellier, P.; Wirth, T. Org. Process Res. Dev. 2016, 20, 495.
[46] Deadman, B. J.; O'Mahony, R. M.; Lynch, D.; Crowley, D. C.; Collins, S. G.; Maguire, A. R. Org. Biomol. Chem. 2016, 14, 3423.
[47] (a) McCaw, P. G.; Deadman, B. J.; Maguire, A. R.; Collins, S. G. J. Flow Chem. 2016, 6, 226.
(b) McCaw, P. G.; Buckley, N. M.; Eccles, K. S.; Lawrence, S. E.; Maguire, A. R.; Collins, S. G. J. Org. Chem. 2017, 82, 3666.
[48] Gerardy, R.; Winter, M.; Vizza, A.; Monbaliu, J.-C. M. React. Chem. Eng. 2017, 2, 149.
[49] Fuse, S.; Otake, Y.; Nakamura, H. Eur. J. Org. Chem. 2017, 44, 6466.
[50] Vaske, Y. S. M.; Mahoney, M. E.; Konopelski, J. P.; Rogow, D. L.; McDonald, W. J. J. Am. Chem. Soc. 2010, 132, 11379.
[51] Willumstad, T. P.; Haze, O.; Mak, X. Y.; Lam, T. Y.; Wang, Y.-P.; Danheiser, R. L. J. Org. Chem. 2013, 78, 11450.
[52] Li, M.-M.; Wei, Y.; Liu, J.; Chen, H.-W.; Lu, L.-Q.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139, 14707.
[53] Garbarino, S.; Protti, S.; Basso, A. Synthesis 2015, 47, 2385.
[54] Basso, A.; Banfi, L.; Garbarino, S.; Riva, R. Angew. Chem., Int. Ed. 2013, 52, 2096.
[55] Musio, B.; Mariani, F.; Sliwinski, E. P.; Kabeshov, M. A.; Odajima, H.; Ley, S. V. Synthesis 2016, 48, 3515.
[56] Takeda, K.; Oohara, T.; Shimada, N.; Nambu, H.; Hashimoto, S. Chem.-Eur. J. 2011, 17, 13992.
[57] Moschetta, E. G.; Negretti, S.; Chepiga, K. M.; Brunelli, N. A.; Labreche, Y.; Feng, Y.; Rezaei, F.; Lively, R. P.; Koros, W. J.; Davies, H. M. L.; Jones, C. W. Angew. Chem., Int. Ed. 2015, 54, 6470.
[58] Pasceri, R.; Bartrum, H. E.; Hayes, C. J.; Moody, C. J. Chem. Commun. 2012, 48, 12077.
[59] Fleming, G. S.; Beeler, A. B. Org. Lett. 2017, 19, 5268.
[60] Pieber, B.; Kappe, C. O. Org. Lett. 2016, 18, 1076.
[61] Mertens, L.; Hock, K. J.; Koenigs, R. M. Chem.-Eur. J. 2016, 22, 9542.
[62] Hock, K. J.; Mertens, L.; Metze, F. K.; Schmittmann, C.; Koenigs, R. M. Green Chem. 2017, 19, 905.
[63] Hock, K. J.; Mertens, L.; Koenigs, R. M. Chem. Commun. 2016, 52, 13783.
[64] Britton, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2017, 56, 8823.
/
〈 |
|
〉 |