研究简报

无碱条件下的Cu2O催化绿色氧化端基炔偶联

  • 马楠 ,
  • 曾祥华
展开
  • 嘉兴学院生物与化学工程学院 嘉兴 314001

收稿日期: 2017-12-27

  修回日期: 2018-01-31

  网络出版日期: 2018-02-11

基金资助

浙江省自然科学基金(No.LY17B030011)及嘉兴市科技计划(No.2015AY11014)资助项目.

Cu2O-Catalyzed Green Oxidative Terminal Alkynes Homocoupling without Bases

  • Ma Nan ,
  • Zeng Xianghua
Expand
  • College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001

Received date: 2017-12-27

  Revised date: 2018-01-31

  Online published: 2018-02-11

Supported by

Project supported by the National Natural Science Foundation of Zhejiang Province (No. LY17B030011) and the Jiaxing Science and Technology Project (No. 2015AY11014).

摘要

无碱条件下,二甲基亚砜(DMSO)为溶剂,利用氧化亚铜在空气气氛中催化端基炔偶联,高效合成1,3-丁二炔类化合物,并研究了其反应机理.另外,该体系可放大至克级规模反应,且催化剂氧化亚铜可以回收利用.

本文引用格式

马楠 , 曾祥华 . 无碱条件下的Cu2O催化绿色氧化端基炔偶联[J]. 有机化学, 2018 , 38(6) : 1556 -1561 . DOI: 10.6023/cjoc201712038

Abstract

A high efficient method for the synthesis of 1,3-diynes derivatives which employed terminal alkynes as the substrates and copper(I) oxide as the catalyst was developed. This method possessed the character of base-free and mild reaction conditions. The reaction mechanism was also studied. Furthermore, this reaction could be magnified to gram scale and the catalyst of copper(I) oxide could be recycled.

参考文献

[1] (a) Lerch, M. L.; Harper, M. K.; Faulkner, D. J. J. Nat.Prod. 2003, 66, 667.
(b) Lechner, D.; Stavri, M.; Oluwatuyi, M.; Perda-Miranda, R.; Gibbons, S. Phytochemistry 2004, 65, 331.
(c) Constable, C. P.; Towers, G. H. N. Planta Med. 1989, 55, 35.
(d) Zhou, Y. Z.; Ma, H. Y.; Chen, H.; Qiao, L.; Yao, Y.; Cao, J. Q.; Pei, Y. H. Chem.Pharm.Bull. 2006, 54, 1455.
(e) Ladika, M.; Fisk, T. E.; Wu, W. W.; Jons, S. D. J.Am.Chem. Soc. 1994, 116, 12093.
(f) Mayer, S. F.; Steinreiber, A.; Orru, R. V. A.; Faber, K. J.Org. Chem. 2002, 67, 9115.
(g) Zeni, G.; Panatieri, R. B.; Lissner, E.; Menezes, P. H.; Braga, A. L.; Stefani, H. A. Org.Lett. 2001, 3, 819.
(h) Stüts, A. Angew.Chem., Int.Ed.Engl. 1987, 26, 320.
[2] (a) Gholami, M.; Tykwinski, R. R. Chem.Rev. 2006, 106, 4997.
(b) Baxter, P. N. W.; Dali-Youcef, R. J.Org.Chem. 2005, 70, 4935.
(c) Marsden, J. A.; Haley, M. M. J.Org.Chem. 2005, 70, 10213.
[3] (a) Cataldo, F. In Polyynes:Synthesis Properties, and Applications, CRC Press/Taylor & Francis, Boca Raton, Florida, 2005.
(b) Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry:Chemistry, Biology and Material Science, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005.
[4] Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Chem.Soc.Rev. 2009, 38, 1530.
[5] Glaser, C. Ber.Dtsch.Chem.Ges. 1869, 2, 422.
[6] Chen, L.; Lemma, B. E.; Rich, J. S.; Mack, J. Green Chem. 2014, 16, 1101.
[7] Mo, G.; Tian, Z.; Li, J.; Wen, G.; Yang, X. Appl. Organomet.Chem. 2015, 29, 231.
[8] (a) Leyva-Perez, A.; Domenech, A.; Al-Resayes, S. I.; Corma, A. ACS Catal. 2012, 2, 121.
(b) Peng, H.; Xi, Y.; Ronaghi, N.; Dong, B.; Akhmedov, G. N.; Shi, X. J. Am.Chem.Soc. 2014, 136, 13174.
[9] (a) Fan, X.; Li, N.; Shen, T.; Cui, X.-M.; Lv, H.; Zhu, H.-B.; Guan, Y.-H. Tetrahedron 2014, 70, 256.
(b) Yin, K.; Li, C.-J.; Li, J.; Jia, X.-S. Appl.Organomet.Chem. 2011, 25, 16.
(c) Navale, B. S.; Bhat, R. G. RSC Adv. 2013, 3, 5220.
(d) Zhang, S.; Liu, X.; Wang, T. Adv.Synth.Catal. 2011, 353, 1463.
(e) Jia, X.; Yin, K.; Li, C.; Li, J.; Bian, H. Green Chem. 2011, 13, 2175.
(f) Balaraman, K.; Kesavan, V. Synthesis 2010, 3461.
(g) Kusuda, A.; Xu, X.-F.; Wang, X.; Tokunaga, E.; Shibata, N. Green Chem. 2011, 13, 843.
(h) Adimurthy, S.; Malakar, C. C.; Beifuss, U. J. Org.Chem. 2009, 74, 5648.
(i) Yin, K.; Li, C.; Li, J.; Jia, X. Green Chem. 2011, 13, 591.
(j) Wang, D.; Li, J.; Li, N.; Gao, T.; Hou, S.; Chen, B. Green Chem. 2010, 12, 45.
(k) Kabalka, G. W.; Wang, L.; Pagni, R. M. Synlett 2001, 108.
(l) Li, Y.-N.; Wang, J.-L.; He, L.-N. Tetrahedron Lett. 2011, 52, 3485.
(m) Sagadevan, A.; Charpe, V. P.; Hwang, K. C. Catal. Sci.Technol. 2016, 6, 7688.
(n)Sagadevan, A.; Lyu, P.-C.; Hwang, K. C. Green Chem. 2016, 18, 4526.
(o) Oishi, T.; Katayama, T.; Yamaguchi, K.; Mizuno, N. Chem.Eur.J. 2009, 15, 7539.
(p) Oishi, T.; Yamaguchi, K.; Mizuno, N. ACS Catal. 2011, 1, 1351.
(q) Zhu, Y.; Shi, Y. Org. Biomol. Chem. 2013, 11, 7451.
(r) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Angew.Chem., Int.Ed. 2008, 47, 2407.
[10] Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem.Rev. 2013, 113, 6234.
[11] Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org.Lett. 2009, 11, 709.
[12] Ye, R.; Zhukhovitskiy, A. V.; Deraedt, C. V.; Toste, F. D.; Somorjai, G. A. Acc.Chem.Res. 2017, 50, 1894.
[13] Tang, B.-X.; Fang, X.-N.; Kuang, R.-Y.; Wu, J.-H.; Chen, Q.; Hu, S.-J.; Liu, Y.-L. Appl.Organomet.Chem. 2016, 30, 943.
[14] Su, L.; Dong, J.; Liu, H.; Sun, M.; Qiu, R.; Zhou, Y.; Yin, S.-F. J. Am.Chem.Soc. 2016, 138, 12348.
[15] Xu, H.; Wu, K.; Tian, J.; Zhu, L.; Yao, X. Green Chem. 2018, 20, 793.
[16] Theunissen, C.; Evano, G. Org.Lett. 2014, 16, 4488.
[17] Chinchilla, R.; Najera, C. Chem.Soc.Rev. 2011, 40, 5084.

文章导航

/