邻碳硼烷与不饱和化合物环加成反应的实验和理论研究进展
收稿日期: 2017-12-29
修回日期: 2018-02-22
网络出版日期: 2018-02-28
基金资助
国家自然科学基金(Nos.21763033;21363028)和云南省高等学校大学生创新创业训练计划资助项目.
Experimental and Computational Research Progress on Cycloadditions of o-Carborane with Unsaturated Compounds
Received date: 2017-12-29
Revised date: 2018-02-22
Online published: 2018-02-28
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21763033, 21363028) and the Innovative Training Program for College Students in Yunnan Province.
邻碳硼烷及其所衍生的邻碳硼炔化合物能够与多种不饱和化合物发生环加成反应转化为结构新颖的功能碳硼烷衍生物.这些功能碳硼烷衍生物在硼中子捕获疗法、催化合成、药物设计等诸多领域都有着广阔的应用前景.近年来,人们在邻碳硼烷和邻碳硼炔的官能化领域取得了显著成就,尤其在反应条件优化、反应选择性控制、反应机理研究等方面取得了明显进步.对近十年以来国内外课题组在邻碳硼烷与炔烃、烯烃、多环或杂环芳烃等不饱和化合物的环加成反应领域所取得的实验研究成果进行了总结,并对邻碳硼炔参与的[2+2+2]、[2+2+1]、[2+2]、[3+2]、[4+2]、[5+2]等环加成反应的实验和理论研究成果、尤其是反应机理作了详细介绍,最后对该领域的发展前景进行了展望.
母伟花 , 程瑞姣 , 尚英伟 , 贺仁泽 , 李冬丽 , 傅冕 . 邻碳硼烷与不饱和化合物环加成反应的实验和理论研究进展[J]. 有机化学, 2018 , 38(6) : 1327 -1340 . DOI: 10.6023/cjoc201712044
o-Carboranes, as well as its derivative o-carborynes, can react with a variety of unsaturated compounds through cycloadditions and transform into various functionalized carboranes which have potential applications in many an area such as boron neutron capture therapy, catalytic systhesis and drug design. Recently, people have made remarkable achievements in the functionalization of o-carboranes and o-carborynes, especially in aspects of reaction condition optimization, selectivity controlling and reaction mechanism exploration. The most recent experimental achievements in the area of cycloaddition between o-carboranes and unsaturated compounds, alkenes, polycyclic or heterocyclic aromatics, in the past ten years are summarized. The reaction mechanisms and corresponding computational findings of o-carboryne-involved [2+2+2],[2+2+1],[2+2],[3+2],[4+2] and[5+2] cycloadditions are summarized and emphasized. Moreover, the prospects of future development in this area are discussed in the end.
Key words: boranes; carboranes; carborynes; cycloaddition; reaction mechanism; density functional theory
[1] Zhang, J.; Xie, Z. Acc. Chem. Res. 2014, 47, 1623.
[2] Qiu, Z.; Xie, Z. Dalton Trans. 2014, 43, 4925.
[3] Eleazer, B. J.; Smith, M. D.; Popov, A. A.; Peryshkov, D. V. J. Am. Chem. Soc. 2016, 138, 10531.
[4] Dziedzic, R. M.; Martin, J. L.; Axtell, J. C.; Saleh, L. M. A.; Ong, T.-C.; Yang, Y. F.; Messina, M. S.; Rheingold, A. L.; Houk, K. N.; Spokoyny, A. M. J. Am. Chem. Soc. 2017, 139, 7729.
[5] Bregadze, V. I. Chem. Rev. 1992, 92, 209.
[6] Scholz, M.; Hey-Hawkins, E. Chem. Rev. 2011, 111, 7035.
[7] Zhang, J.; Xie, Z. Chem.-Asian J. 2010, 5, 1742.
[8] Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F.-G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. Chem. Rev. 1998, 98, 1515.
[9] Armstrong, A. F.; Valliant, J. F. Dalton Trans. 2007, 4240.
[10] Sivaev, I. B.; Bregadze, V. V. Eur. J. Inorg. Chem. 2009, 1433.
[11] Zhu, Y.; Peng, A. T.; Carpenter, K.; Maguire, J. A.; Hosmane, N. S.; Takagaki, M. J. Am. Chem. Soc. 2005, 127, 9875.
[12] Chen, G.; Yang, J.; Lu, G.; Liu, P. C.; Chen, Q.; Xie, Z.; Wu, C. Mol. Pharmaceutics 2014, 11, 3291.
[13] Hawthorne, M. F.; Zheng, Z. Acc. Chem. Res. 1997, 30, 267.
[14] Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131.
[15] Xie, Z. Acc. Chem. Res. 2003, 36, 1.
[16] Yao, Z.-J.; Jin, G.-X. Coord. Chem. Rev. 2013, 257, 2522.
[17] Popescu, A. R.; Teixidor, F.; Vinas, C. Coord. Chem. Rev. 2014, 269, 54.
[18] Gingrich, H. L.; Ghosh, T.; Huang, Q.; Jones, M. Jr. J. Am. Chem. Soc. 1990, 112, 4082.
[19] Ho, D. M.; Cunningham, R. J.; Brewer, J. A.; Bian, N.; Jones, M. Jr. Inorg. Chem. 1995, 34, 5274.
[20] Jones, M. Jr.; Levin, R. H. J. Am. Chem. Soc. 1969, 91, 6411.
[21] Kiran, B.; Anoop, A.; Jemmis, E. D. J. Am. Chem. Soc. 2002, 124, 4402.
[22] Cunningham, R. J.; Bian, N.; Jones, M. Jr. Inorg. Chem. 1994, 33, 4811.
[23] Ghosh, T.; Gingrich, H. L.; Kam, C. K.; Mobraaten, E. C.; Jones, M., Jr. J. Am. Chem. Soc. 1991, 113, 1313.
[24] Deng, L.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2005, 127, 13774.
[25] Huang, Q.; Gingrich, H. L.; Jones, M. Jr. Inorg. Chem. 1991, 30, 3254.
[26] Ren, S.; Chan, H.-S.; Xie, Z. Organometallics 2009, 28, 4106.
[27] Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. 2015, 127, 10769.
[28] Lu, J.-Y.; Du, Y.; Zhao, B.; Lu, J. Tetrahedron 2016, 72, 161.
[29] Ni, H.; Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2017, 56, 712.
[30] Zheng, F.; Leung, T.-F.; Chan, K.-W.; Sung, H. H. Y.; Williams, I. D.; Xie, Z.; Jia, G. Chem. Commun. 2016, 52, 10767.
[31] Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 12727.
[32] Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 3502.
[33] Liu, G.; Yan, H. Organometallics 2015, 34, 591.
[34] Zhao, D.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 3166.
[35] Cheng, R.; Zhang, J.; Zhang, J.; Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 1751.
[36] Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 11840.
[37] Chan, T. L.; Xie, Z. Chem. Commun. 2016, 52, 7280.
[38] Wang, Z.; Ye, H.; Li, Y.; Li, Y.; Yan, H. J. Am. Chem. Soc. 2013, 135, 11289.
[39] Wang, S. R.; Xie, Z. Organometallics 2012, 31, 4544.
[40] Tang, C.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 7662.
[41] Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 1295.
[42] Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.
[43] Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513.
[44] Qiu, Z.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 12192.
[45] Wang, S. R.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2011, 133, 5760.
[46] Zhao, D.; Zhang, J.; Xie, Z. Angew. Chem., Int. Ed. 2014, 53, 12902.
[47] Visbal, R.; Ospino, I.; Lopez-De-Luzuriaga, J. M.; Laguna, A.; Gimeno, M. C. J. Am. Chem. Soc. 2013, 135, 4712.
[48] Guo, J.; Liu, D.; Zhang, J.; Zhang, J.; Miao, Q.; Xie, Z. Chem. Commun. 2015, 51, 12004.
[49] Jin, G. F.; Hwang, J.-H.; Lee, J.-D.; Wee, K.-R.; Suh, I.-H.; Kang, S. O. Chem. Commun. 2013, 49, 9398.
[50] Lee, J.-D.; Lee, Y.-J.; Son, K.-C.; Cheong, M.; Ko, J.; Kang, S. O. Organometallics 2007, 26, 3374.
[51] Brown, D. A.; Colquhoun, H. M.; Daniels, J. A.; MacBride, J. A. H.; Stephenson, I. R.; Wade, K. J. Mater. Chem. 1992, 2, 793.
[52] Zhang, X.; Zou, X.; Yan, H. Organometallics 2014, 33, 2661.
[53] Cioran, A. M.; Musteti, A. D.; Teixidor, F.; Krpetic, Z.; Prior, I. A.; He, Q.; Kiely, C. J.; Brust, M.; Vinas, C. J. Am. Chem. Soc. 2012, 134, 212.
[54] Grimes, R. N. Dalton Trans. 2015, 44, 5939.
[55] Wee, K.-R.; Cho, Y.-J.; Jeong, S.; Kwon, S.; Lee, J.-D.; Suh, I.-H.; Kang, S. O. J. Am. Chem. Soc. 2012, 134, 17982.
[56] Wee, K.-R.; Han, W.-S.; Cho, D. W.; Kwon, S.; Pac, C.; Kang, S. O. Angew. Chem. Int. Ed. 2012, 51, 2677.
[57] Shi, C.; Sun, H.; Tang, X.; Lv, W.; Yan, H.; Zhao, Q.; Wang, J.; Huang, W. Angew. Chem., Int. Ed. 2013, 52, 13434.
[58] Bian, D.; Nie, Y.; Miao, J.; Wang, Y.; Zhang, Z. Chin. J. Org. Chem. 2013, 33, 1774(in Chinese). (卞德乾, 聂永, 苗金玲, 王亚峰, 张振伟, 有机化学, 2013, 33, 1774.)
[59] Zhu, L.; Jiang, Q.-B.; Yan, H. Chin. J. Inorg. Chem. 2014, 30, 2246(in Chinese). (朱琳, 蒋其柏, 燕红, 无机化学学报, 2014, 30, 2246.)
[60] Deng, L.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2006, 128, 7728.
[61] Quan, Y.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 18742.
[62] Yuan, Y. G.; Ren, S. K.; Qiu, Z. Z.; Wang, S. W.; Xie, Z. W. Sci. China:Chem. 2014, 57, 1157.
[63] Ren, S.; Qiu, Z.; Xie, Z. Organometallics 2013, 32, 4292.
[64] Zhang, J.; Qiu, Z.; Xu, P.-F.; Xie, Z. ChemPlusChem 2014, 79, 1044.
[65] Zhao, D.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 13938.
[66] Zhao, D.; Xie, Z. Coord. Chem. Rev. 2016, 314, 14.
[67] Qiu, Z. Tetrahedron Lett. 2015, 56, 963.
[68] Xie, Z. W. Sci. China:Chem. 2014, 57, 1061.
[69] Qiu, Z. Z.; Xie, Z. W. Sci. China, Ser. B:Chem. 2009, 39, 1544.
[70] Zhang, J.; Xie, Z. Pure Appl. Chem. 2013, 85, 661.
[71] Qiu, Z. Z.; Xie, Z. W. Sci. China, Ser. B:Chem. 2009, 39, 1053(in Chinese). (邱早早, 谢作伟, 中国科学B辑:化学, 2009, 39, 1053.)
[72] Gulinsha, G.; Zhang, R.; Yan, H. Chin. J. Inorg. Chem. 2010, 26, 733(in Chinese). (古林莎·果依其巴依, 张锐, 燕红, 无机化学学报, 2010, 26, 733.)
[73] Patel, R. M.; Argade, N. P. Org. Lett. 2013, 15, 14.
[74] Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 113.
[75] Shi, D.; Xie, Y.; Zhou, H.; Xia, C.; Huang, H. Angew. Chem. 2012, 124, 1274.
[76] Qiu, Z. Ph.D. Dissertation, Chinese University of Hong Kong, Hong Kong, 2012.
[77] Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 2084.
[78] Qiu, Z.; Wang, S. R.; Xie, Z. Angew. Chem., Int. Ed. 2010, 49, 4649.
[79] Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 16085.
[80] Ren, S.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2012, 134, 3242.
[81] Ren, S.; Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2012, 51, 1010.
[82] Mu, W.-H.; Xia, S.-Y.; Li, J.-X.; Fang, D.-C.; Wei, G.; Chass, G. A. J. Org. Chem. 2015, 80, 9108.
[83] Sayler, A. A.; Beall, H.; Sieckhaus, J. F. J. Am. Chem. Soc. 1973, 95, 5790.
[84] Qiu, Z.; Deng, L.; Chan, H.-S.; Xie, Z. Organometallics 2010, 29, 4541.
[85] Zhang, J.; Quan, Y.; Lin, Z.; Xie, Z. Organometallics 2014, 33, 3556.
[86] Quan, Y.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 7599.
[87] Zhao, D.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 9423.
[88] Ren, S.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 3862.
[89] Naito, H.; Morisaki, Y.; Chujo, Y. Angew. Chem., Int. Ed. 2015, 54, 5084.
[90] Ren, S.; Qiu, Z.; Xie, Z. Organometallics 2012, 31, 4435.
[91] Harmgarth, N.; Grasing, D.; Dröse, P.; Hrib, C. G.; Jones, P. G.; Lorenz, V.; Hilfert, L.; Busse, S.; Edelmann, F. T. Dalton Trans. 2014, 43, 5001.
[92] Brinkley, J. M.; Friedman, L. Tetrahedron Lett. 1972, 28, 4141.
[93] Reinecke, M. G.; Mazza, D. D. J. Org. Chem. 1989, 54, 2142.
[94] Barnett-Thamattoor, L.; Zheng, G.-X.; Ho, D. M.; Jones, M. Jr. Inorg. Chem. 1996, 35, 7311.
[95] Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701.
[96] Lee, T.; Jeon, J.; Song, K. H.; Jung, I.; Baik, C.; Park, K.-M.; Lee, S. S.; Kang, S. O.; Ko, J. Dalton Trans. 2004, 933.
[97] Jeon, J.; Kitamura, T.; Yoo, B.-W.; Kang, S. O.; Ko, J. Chem. Commun. 2001, 2110.
[98] Wang, S. R.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 9988.
[99] Wang, S. R.; Xie, Z. Organometallics 2012, 31, 3316.
[100] Wang, S. R.; Xie, Z. Tetrahedron 2012, 68, 5269.
[101] Huo, R.-P.; Guo, L.-H.; Zhang, F.-Q.; Zhang, X. Int. J. Quantum Chem. 2017, 117, e25372.
[102] Zhao, D.; Zhang, J.; Xie, Z. Angew. Chem., Int. Ed. 2014, 53, 8488.
[103] Mu, W.; Ma, Y.; Fang, D.; Wang, R.; Zhang, H. Acta Chim. Sinica 2018, 76, 55(in Chinese). (母伟花, 马瑶, 方德彩, 王蓉, 张海娜, 化学学报, 2018, 76, 55.)
[104] Zhang, J.; Qiu, Z.; Xie, Z. Organometallics 2017, 36, 3806.
[105] Li, H. Ph.D. Dissertation, Nanjing University, Nanjing, 2017 (in Chinese). (李欢欢, 博士论文, 南京大学, 南京, 2017.)
/
〈 |
|
〉 |