综述与进展

过渡金属催化的成胍反应高效构建胍类衍生物

  • 王连军 ,
  • 迟樾 ,
  • 张文雄 ,
  • 席振峰
展开
  • a 湖南工程学院化学化工学院 湘潭 411104;
    b 北京大学化学与分子工程学院 北京 100871

收稿日期: 2018-01-26

  修回日期: 2018-02-14

  网络出版日期: 2018-02-28

基金资助

国家自然科学基金(Nos.21725201,21572005)资助项目.

Transition-Metal-Catalyzed Guanylation Reaction of Amines with Carbodiimides Constructing Guanidines

  • Wang Lianjun ,
  • Chi Yue ,
  • Zhang Wenxiong ,
  • Xi Zhenfeng
Expand
  • a School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104;
    b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871

Received date: 2018-01-26

  Revised date: 2018-02-14

  Online published: 2018-02-28

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21725201, 21572005).

摘要

胍及其衍生物是一类很重要的含氮有机化合物,在医药、工农业中应用非常广泛.胍类化合物的合成最先通过各种胍基化试剂制得,近年来逐渐转向由胺与碳二亚胺经合适的催化剂直接制备成胍.系统综述了近十多年过渡金属催化胺与碳二亚胺的成胍反应直接构建非环胍和环状胍的催化机理、反应体系、底物范围及成胍产物的结构特点等.

关键词: 成胍反应; ; ; 碳二亚胺

本文引用格式

王连军 , 迟樾 , 张文雄 , 席振峰 . 过渡金属催化的成胍反应高效构建胍类衍生物[J]. 有机化学, 2018 , 38(6) : 1341 -1349 . DOI: 10.6023/cjoc201801037

Abstract

Guanidine derivatives are an important class of nitrogen-containing organic compounds, which are widely used in various pharmaceuticals, agrochemicals, sweeteners, explosives, and so on. Although classical methods for the synthesis of guanidines are established, there are still many fatal shortcomings which need to be resolved. In recent years, it has been gradually turned to the direct catalytic guanylation reaction of amines with carbodiimides. In this paper, the recent progress in transition-metal-catalyzed guanylation reaction of amines with carbodiimides to construct acyclic or cyclic guanidines based on the catalytic reaction mechanism, reaction system, the scope of substrates, etc. is reviewed.

参考文献

[1] (a) Berlinck, R. G. S. Nat. Prod.Rep. 1999, 16, 339.
(b) Blondeau, P.; Segura, M.; Perez-Fernandez, R.; de Mendoza, J. Chem.Soc.Rev. 2007, 36, 198.
(c) Berlinck, R. G. S.; Burtoloso, A. C. B.; Kossuga, M. H. Nat.Prod.Rep. 2008, 25, 919.
(d) Coles, M. P. Chem.Commun. 2009, 3659.
(e) Berlinck, R. G. S.; Burtoloso, A. C. B.; Trindade-Silva, A. E.; Romminger, S.; Morais, R. P.; Bandeira, K.; Mizuno, C. M. Nat.Prod.Rep. 2010, 27, 1871.
(f) Castagnolo, D.; Schenone, S.; Botta, M. Chem.Rev. 2011, 111, 5247.
(g) Berlinck, R. G. S.; Trindade-Silva, A. E.; Santos, M. F. C. Nat.Prod. Rep. 2012, 29, 1382.
(h) Berlinck, R. G. S.; Trindade-Silva, A. E.; Santos, M. F. C. Nat.Prod.Rep. 2012, 29, 1382.
(i) Peng, K.; Ding, W.; Tu, W.; Hu, J.; Liu, C.; Yang, J. Acta Chim.Sinica 2016, 74, 713(in Chinese). (彭开美, 丁伟, 涂伟萍, 胡剑青, Liu Chao, Yang Jian, 化学学报, 2016, 74, 713.)
(j) Xu, X.; Chen, X.; Li, J.; Xu, W.; Zhang, Y. Chin.J.Org. Chem. 2016, 36, 1985(in Chinese). (徐树英, 陈小佳, 黎吉辉, 许文茸, 张玉苍, 有机化学, 2016, 36, 1985.)
[2] (a) Selig, P. Synthesis 2013, 45, 703.
(b) Fu, X.; Tan, C.-H. Chem.Commun. 2011, 47, 8210.
(c) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem.Soc.Rev. 2012, 41, 2109.
[3] (a) Edelmann, F. T. Coord.Chem.Rev. 1994, 137, 403.
(b) Zhou, Y.; Yap, G. P. A.; Richeson, D. S. Organometallics 1998, 17, 4387.
(c) Luo, Y.; Yao, Y.; Shen, Q. Macromolecules 2002, 35, 8670.
(d) Coles, M. P. Dalton Trans. 2006, 985.
(e) Zhang, J.; Zhou, X. C.R.Chim. 2010, 13, 633.
(f) Zhang, J.; Zhou, X. Dalton Trans. 2011, 40, 9637.
[4] (a) Alonso-Moerno, C.; Antinolo, A.; Carrillo-Hermosilla, F.; Otero, A. Chem.Soc.Rev. 2014, 43, 3406.
[5] Molina, P.; Aller, E.; Lorenzo, A. Synlett 2003, 714.
[6] Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. J. Am.Chem.Soc. 2003, 125, 8100.
[7] (a) Zhang, W.-X.; Nishiura, M.; Hou, Z. Synlett 2006, 1213.
(b) Zhang, W.-X.; Nishiura, M.; Hou, Z. Chem.Eur.J. 2007, 13, 4307.
(c) Zhang, W.-X.; Hou, Z. Org.Biomol.Chem. 2008, 6, 1720.
(d) Suzuki, T.; Zhang, W.-X.; Nishiura, M.; Hou, Z. J.Synth.Org. Chem.Jpn. 2009, 67, 451.
(e) Nishiura, M.; Hou, Z. Bull.Chem.Soc.Jpn. 2010, 83, 595.
[8] (a) Zhang, W.-X.; Xu, L.; Xi, Z. Chem.Commun. 2015, 51, 254.
(b) Xu, L.; Zhang, W.-X.; Xi, Z. Organometallics 2015, 34, 1787.
(c) Chi, Y.; Xu, L.; Du, S.; Yan, H.; Zhang, W.-X.; Xi, Z. Chem.Eur. J. 2015, 21, 10369.
(d) Zhang, W.-X.; Li, D.; Wang, Z.; Xi, Z. Organometallics 2009, 28, 882.
[9] (a) Du, Z.; Li, W.; Zhu, X.; Xu, F.; Shen, Q. J. Org.Chem. 2008, 73, 8966.
(b) Zhu, X.; Du, Z.; Xu, F.; Shen, Q. J.Org.Chem. 2009, 74, 6347.
(c) Cao, Y.; Du, Z.; Li, W.; Li, J.; Zhang, Y.; Xu, F.; Shen, Q. Inorg.Chem. 2011, 50, 3729.
(d) Li, Z.; Xue, M.; Yao, H. Sun, H.; Zhang, Y. Shen, Q. J.Organomet. Chem. 2012, 713, 27.
(e) Cai, L.; Yao, Y.; Xue, M.; Zhang, Y.; Shen, Q. Appl.Organomet. Chem. 2013, 27, 366.
(f) Tu, J.; Li, W.; Xue, M.; Zhang, Y.; Shen, Q. Dalton Trans. 2013, 42, 5890.
[10] (a) Liu, C.; Zhou, S.; Wang, S.; Zhang, L.; Yang, G. Dalton Trans. 2010, 39, 8994.
(b) Wu, Y.; Wang, S.; Zhang, L.; Yang, G.; Zhu, X.; Zhou, Z.; Zhu, H.; Wu, S. Eur. J.Org.Chem. 2010, 326.
[11] (a) Shen, H.; Chan, H.-S.; Xie, Z. Organometallics 2006, 25, 5515.
(b) Shen, H.; Xie, Z. J.Organomet.Chem. 2009, 694, 1652.
(c) Shen, H.; Wang, Y.; Xie, Z. Org.Lett. 2011, 13, 4562.
[12] Schweizer, P. D.; Wadepohl, H.; Gade, L. H. Oganometallics 2013, 32, 3697.
[13] Montilla, F.; Pastor, A.; Galindo, A. J.Organomet.Chem. 2004, 689, 993.
[14] Romero-Fernandez, J.; Carrillo-Hermosilla, F.; Antinolo, A.; Alonso-Moreno, C.; Rodriguez, A. M.; Lopez-Solera, I.; Otero, A. Dalton Trans. 2010, 39, 6419.
[15] Montilla, F.; del Rio, D.; Pastor, A.; Galindo, A. Organometallics 2006, 25, 4996.
[16] Mukherjee, A.; Sen, T. K.; Mandal, S. K.; Maity, B.; Koley, D. RSC Adv. 2013, 3, 1255.
[17] Elorriaga, D.; Carrillo-Hermosilla, F.; Antinolo, A.; Sua;rea, F. J.; Lopez-Solera, I.; Ferna;ndez-Gala;n, R.; Villaenno, E. Dalton Trans. 2013, 42, 8223.
[18] (a) Li, D.; Guang, J.; Zhang, W.-X.; Wang, Y.; Xi, Z. Org.Biomol.Chem. 2010, 8, 1816.
(b) Li, D.; Wang, Y.; Zhang, W.-X.; Zhang, S.; Guang, J.; Xi, Z. Organometallics 2011, 30, 5278.
[19] (a) Alonso-Moreno, C.; Carrillo-Hermosilla, F.; Garces, A.; Otero, A.; Lopez-Solera, I.; Rodriguez, A. M.; Antinolo, A. Organometallics 2010, 29, 2789.
(b) Bravo, I.; Alonso-Moreno, C.; Posadas, I.; Albaladejo, J.; Carrillo-Hermosilla, F.; Cena, V.; Garzon, A.; Lopez-Solera, I.; Romero-Castillo, L. RSC Adv. 2016, 6, 8267.
[20] Bhattacharjee, J.; Sachdeva, M.; Banerjee, I.; Panda, T. K. J. Chem.Sci. 2016, 128, 875.
[21] Kantam, M. L.; Priyadarshini, S.; Joseph, P. J. A.; Srinivas, P.; Vinu, A.; Klabunde, K. J.; Nishina, Y. Tetrahedron 2012, 68, 5730.
[22] Pottabathula, S.; Royo, B. Tetrahedron Lett. 2012, 53, 5156.
[23] Tan, D.; Mottillo, C.; Katsenis, A. D.; Strukil, V.; Friscic, T. Angew. Chem., Int.Ed. 2014, 126, 9475.
[24] Grirrane, A.; Garcia, H.; Corma, A.; A?lvarez, E.Chem. Eur.J. 2012, 18, 14934.
[25] Grirrane, A.; Garcia, H.; A?lvarez, E. Beilstein J.Org. Chem. 2013, 9, 1455.
[26] Tayama, E.; Ishikawa, M.; Iwamoto, H.; Hasegawa, E. Tetrahedron Lett. 2012, 53, 5159.
[27] Yavari, I.; Sodagar, E.; Nematpour, M.; Askarian-Amiri, M. Synlett 2015, 26, 1230.
[28] Frindy, S.; Kadib, A. E.; Lahcini, M.; Primo, A.; Garcia, H. ACS Catal. 2016, 6, 3863.
[29] (a) Rauws, T. R. M.; Maes, B. U. W. Chem.Soc.Rev. 2012, 41, 2463.
(b) Mulcahy, J. V.; Bois, J. D. J.Am.Chem.Soc. 2008, 130, 12630.
(c) Aron, Z. D.; Overman, L. E. Chem.Commun. 2004, 253.
(d) Gainer, M. J.; Bennett, N. R.; Takahashi, Y.; Looper, R. E. Angew.Chem., Int.Ed. 2011, 50, 684.
[30] (a) Ishikawa, T.; Kumamoto, T. Synthesis 2006, 737.
(b) Heys, L.; Moore, C. G.; Murphy, P. J. Chem.Soc.Rev. 2000, 29, 57.
[31] (a) Schmuck, C. Coord.Chem.Rev. 2006, 250, 3053.
(b) Edelmann, F. T. Chem.Soc.Rev. 2012, 41, 7657.
(c) Turockin, A.; Honeker, R.; Raven, W.; Selig, P. J.Org.Chem. 2016, 81, 4516.
[32] (a) Isobe, T.; Fukuda, K.; Tokunaga, T.; Seki, H.; Yamaguchi, K.; Ishikawa, T. J.Org.Chem. 2000, 65, 7774.
(b) Butler, D. C. D.; Inman, G. A.; Alper, H. J.Org.Chem. 2000, 65, 5887.
(c) Heinelt, U.; Schultheis, D.; Jager, S.; Lindenmaier, M.; Pollex, A.; Beckmann, H. S. G. Tetrahedron 2004, 60, 9883.
(d) Berlinck, R. G. S.; Kossuga, M. H. Nat.Prod.Rep. 2005, 22, 516.
(e) Kim, M.; Mulcahy, J. V.; Espino, C. G.; Bois, J. D. Org.Lett. 2006, 8, 1073.
(f) Blackburn, C.; Achab, A.; Elder, A.; Ghosh, S.; Guo, J.; Harriman, G.; Jones, M. J.Org.Chem. 2005, 70, 10206.
(g) Hirota, S.; Kato, R.; Suzuki, M.; Soneta, Y.; Otani, T.; Saito, T. Eur.J.Org.Chem. 2008, 2075.
[33] (a) Lv, X.; Bao, W. J.Org.Chem. 2009, 74, 5618.
(b) He, H.-F.; Wang, Z.-J.; Bao, W. Adv.Synth.Catal. 2010, 352, 2905.
(c) Yuan, G.; Liu, H.; Gao, J.; Xu, H.; Jiang, L.; Wang, X.; Lv, X. RSC Adv. 2014, 4, 21904.
(d) Xu, B.; Peng, B.; Cai, B.; Wang, S.; Wang, X.; Lv, X. Adv.Synth.Catal. 2016, 358, 653.
[34] (a) Evindar, G.; Batey, R. A. Org.Lett. 2003, 5, 133.
(b) Deng, X.; McAllister, H.; Mani, N. S. J.Org.Chem. 2009, 74, 5742.
(c) Saha, P.; Ramana, T.; Purkait, N.; Ali, M. A.; Paul, R.; Punniyamurthy, T. J. Org.Chem. 2009, 74, 8719.
(d) Yuan, G.; Liu, H.; Gao, J.; Yang, K.; Niu, Q.; Mao, H.; Wang, X.; Lv, X. J. Org.Chem. 2014, 79, 1749.
(e) Chi, Y.; Zhang, W.-X.; Xi, Z. Org.Lett. 2014, 16, 6274.
[35] Wang, F.; Cai, S.; Liao, Q.; Xi, C. J.Org.Chem. 2011, 76, 3174.
[36] (a) Zeng, F.; Alper, H. Org.Lett. 2010, 12, 1188.
(b) Zeng, F.; Alper, H. Org.Lett. 2010, 12, 3642.
[37] Roberts, B.; Liptrot, D.; Luker, T.; Stocks, M. J.; Barber, C.; Webb, N.; Dods, R.; Martin, B. Tetrahedron Lett. 2011, 52, 3793.
[38] Qiu, G.; Liu, G.; Pu, S.; Wu, J. Chem.Commun. 2012, 48, 2903.
[39] Shen, H.; Wang, Y.; Xie, Z. Org.Lett. 2011, 13, 4562.
[40] Baishya, A.; Peddarao, T.; Barman, M. K.; Nembenna, S. New J. Chem. 2015, 39, 7503.
[41] Penafiel, J.; Maron, L.; Harder, S. Angew.Chem., Int. Ed. 2015, 54, 201. Wangngae, S.; Pattarawarapan, M.; Phakhodee, W. Synlett 2016, 27, 1121.

文章导航

/