研究论文

一种在含水介质和食物样品中快速和高灵敏度的双通道检测氰根的化学传感器

  • 曲文娟 ,
  • 李文婷 ,
  • 张海丽 ,
  • 张有明 ,
  • 林奇 ,
  • 姚虹 ,
  • 魏太保
展开
  • 西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室 甘肃省高分子材料重点实验室 兰州 730070

收稿日期: 2017-12-03

  修回日期: 2018-03-03

  网络出版日期: 2018-03-16

基金资助

国家自然科学基金(Nos.21662031,21661028,21574104,21262032)资助项目.

Rapid and Highly Sensitive Dual-Channel Detection of Cyanide in Aqueous Medium and the Applications in Food Samples

  • Qu Wenjuan ,
  • Li Wenting ,
  • Zhang Haili ,
  • Zhang Youming ,
  • Lin Qi ,
  • Yao Hong ,
  • Wei Taibao
Expand
  • Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070

Received date: 2017-12-03

  Revised date: 2018-03-03

  Online published: 2018-03-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21662031, 21661028, 21574104, 21262032).

摘要

众所周知,氰根离子(CN-)是最具有毒性的阴离子之一,它能够对环境和生物体造成很多不良的影响,因此,研究氰根离子的检测方法是非常有必要的,尤其是在水中以及食物中进行检测.然而,由于游离态的氰根离子半衰期短,但很多氰根离子检测方法所需分析时间较长并且容易受到其他阴离子的干扰,这些都成为精确检测氰根离子的挑战.利用氰根离子特殊的亲核性,合成了一个基于萘并呋喃酰氯和2-氨基苯并咪唑的新型传感器分子Q1-2,其设计原理在于通过调节分子内的氢键来影响分子的π-共轭效应.当加入氰根离子之后,传感器Q1-2的紫外光谱出现红移现象,并且荧光也立刻猝灭.计算得到该传感器通过紫外和荧光检测氰根离子的最低检测限分别为8.0769×10-7和1.0510×10-9 mol/L.其他共存的阴离子几乎不能干扰该识别过程.不仅如此,Q1-2可成功地应用于可见光和365 nm紫外灯照射下,肉眼识别食物样品中和硅胶板上的氰根.

本文引用格式

曲文娟 , 李文婷 , 张海丽 , 张有明 , 林奇 , 姚虹 , 魏太保 . 一种在含水介质和食物样品中快速和高灵敏度的双通道检测氰根的化学传感器[J]. 有机化学, 2018 , 38(7) : 1792 -1799 . DOI: 10.6023/cjoc201712004

Abstract

It is well-known that cyanide anion (CN-) is a hypertoxic anion, which can cause adverse effects in both environment and living beings. Thus, it is highly desirable to develop strategies for detecting cyanide, especially in aqueous medium and food. However, due to the short half-life of free cyanide, long analysis time and interference from other competitive anions are general challenges for accurate monitoring of cyanide. Taking advantage of the special nucleophilicity of cyanide, a new colorimetric and fluorescent sensor (Q1-2) was synthesized based on naphtho[2,1-b]furan-2-carbonyl chloride and 2-aminobenzimidazole which designed by tuning the intramolecular hydrogen bonding to affect the π-conjugated efficiency. Upon the addition of cyanide anion, the probe displayed a red-shift in absorption spectra and the fluorescence decreased immediately with the detection limit of 8.0769×10-7 and 1.0510×10-9 mol/L, respectively. Other anions gave nearly no interference. Furthermore, Q1-2 was successfully applied to the naked eye identification for cyanide in the visible light and under the UV lamp in food samples and silica gel plates.

参考文献

[1] Yan, X. Z.; Wang, M.; Cook, T. R.; Zhang, M. M.; Saha, M. L.; Zhou, Z. X.; Li, X. P.; Huang, F. H.; Stang, P. J. J. Am. Chem. Soc. 2016, 138, 4580.
[2] Shi, B. B.; Jie, K. C.; Zhou, Y. J.; Zhou, J.; Xia, D. Y.; Huang, F. H. J. Am. Chem. Soc. 2016, 138, 80.
[3] Shi, B. B.; Jie, K. C.; Zhou, Y. J.; Xia, D. Y.; Yao, Y. Chem. Commun. 2015, 51, 4503.
[4] Wang, S.; Fei, X.; Guo, J.; Yang, Q.; Li, Y.; Song, Y. Talanta 2016, 148, 229.
[5] Yao, Y.; Jie, K.; Zhou, Y.; Xue, M. Tetrahedron Lett. 2014, 55, 3195.
[6] Sun, Y.; Hu, J. H.; Qi, J.; Li, J. B. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2016, 167, 101.
[7] Yu, M.; Liu, Y.; Chen, Y.; Zhang, N.; Liu, Y. Chin. J. Chem. 2012, 30, 1948.
[8] Zhang, Z.; Wang, H.; Zhang, H.; Liu, Y. Chin. J. Chem. 2013, 31, 598.
[9] Wang, L.; Zhu, L.; Li, L.; Cao, D. RSC Adv. 2016, 6, 55182.
[10] Wang, L.; Du, J.; Cao, D. Sens. Actuators, B 2014, 198, 455.
[11] Chen, L. J.; Ren, Y. Y.; Wu, N. W.; Sun, B.; Ma, J. Q.; Zhang, L.; Tan, H. W.; Liu, M. H.; Li, X. P.; Yang, H. B. J. Am. Chem. Soc. 2015, 137, 11725.
[12] Liu, T.; Huo, F.; Li, J.; Cheng, F.; Yin, C. Sens. Actuators, B 2017, 239, 526.
[13] Wang, Q.; Cheng, M.; Cao, Y. H.; Qiang, J. L.; Wang, L. Y. Acta Chim. Sinica 2016, 74, 9 (in Chinese).
(王其, 程明, 曹逸涵, 强琚莉, 王乐勇, 化学学报, 2016, 74, 9.)
[14] Gale, P. A. Chem. Soc. Rev. 2010, 39, 3746.
[15] Gale, P. A. Chem. Commun. 2011, 47, 82.
[16] Erdemir, S.; Kocyigit, O.; Alici, O.; Malkondu, S. Tetrahedron Lett. 2013, 54, 613.
[17] Singh, Y.; Ghosh, T. Talanta 2016, 148, 257.
[18] Fillaut, J. L.; Akdas-Kilig, H.; Dean, E.; Latouche, C.; Boucekkine, A. Inorg. Chem. 2013, 52, 4890.
[19] Huang, Q.; Qu, W. J.; Chen, J.; Lin, Q.; Yao, H.; Zhang, Y. M.; Wei, T. B. Chin. J. Org. Chem. 2017, 37, 629 (in Chinese).
(黄青, 曲文娟, 陈洁, 林奇, 姚虹, 张有明, 魏太保, 有机化学, 2017, 37, 629.)
[20] Li, W. T.; Qu, W. J.; Zhang, H. L.; Li, X.; Lin, Q.; Yao, H.; Zhang, Y. M.; Wei, T. B. Chin. J. Org. Chem. 2017, 37, 2619 (in Chinese).
(李文婷, 曲文娟, 张海丽, 李翔, 林奇, 姚虹, 张有明, 魏太保, 有机化学, 2017, 37, 2619.)
[21] Kumari, N.; Jha, S.; Bhattacharya, S. J. Org. Chem. 2011, 76, 8215.
[22] Lin, W. C.; Fang, S. K.; Hu, J. W.; Tsai, H. Y.; Chen, K. Y. Anal. Chem. 2014, 86, 4648.
[23] Shiraishi, Y.; Nakamura, M.; Hayashi, N.; Hirai, T. Anal. Chem. 2016, 88, 6805.
[24] Kim, H. J.; Ko, K. C.; Lee, J. H.; Lee, J. Y.; Kim, J. S. Chem. Commun. 2011, 47, 2886.
[25] Wang, L.; Li, L.; Cao, D. Sens. Actuators, B 2016, 228, 347.
[26] Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. Chem. Soc. Rev. 2010, 39, 2120.
[27] Xu, Z.; Kim, S. K.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1457.
[28] Cheng, X.; Tang, R.; Jia, H.; Feng, J.; Qin, J.; Li, Z. ACS Appl. Mater. Interfaces 2012, 4, 4387.
[29] Wu, X.; Xu, B.; Tong, H.; Wang, L. Macromolecules 2011, 44, 4241.
[30] Li, J.; Qi, X.; Wei, W.; Liu, Y.; Xu, X.; Lin, Q.; Dong, W. Sens. Actuators, B 2015, 220, 986.
[31] Li, J.; Qi, X.; Wei, W.; Zuo, G.; Dong, W. Sens. Actuators, B 2016, 232, 666.
[32] Qu, W. J.; Guan, J.; Wei, T. B.; Yan, G. T.; Lin, Q.; Zhang, Y. M. RSC Adv. 2016, 6, 35804.

文章导航

/