通过羧酸与异硫氰酸酯的反应直接构筑大位阻与缺电子仲酰胺
收稿日期: 2018-01-31
修回日期: 2018-03-18
网络出版日期: 2018-03-29
基金资助
国家自然科学基金(Nos.21602055,21302048)、湖南省高校创新团队(No.2012-318)、湖南省教育厅重点建设学科资助项目.
Synthesis of Sterically Hindered and Electron-Deficient Secondary Amides from Unactivated Carboxylic Acids and Isothiocyanates
Received date: 2018-01-31
Revised date: 2018-03-18
Online published: 2018-03-29
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21602055, 21302048), the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (No. 2012-318) and the Construct Program of the Key Discipline in Hunan Province.
谭家希 , 郭也 , 曾飞 , 陈观荣 , 谢龙勇 , 何卫民 . 通过羧酸与异硫氰酸酯的反应直接构筑大位阻与缺电子仲酰胺[J]. 有机化学, 2018 , 38(7) : 1740 -1748 . DOI: 10.6023/cjoc201801049
A mild, general and efficient method for the direct synthesis of diverse amides from commercially available carboxylic acids and isothiocyanates has been developed. The strategy does not require stoichiometric amounts of coupling reagents or metal catalysts, and is especially for sterically hindered and electron-deficient secondary amides, which are otherwise challenging to synthesize.
[1] (a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage:Structural Significance in Chemistry, Biochemistry, and Materials Science, Wiley-Interscience, New York 2000.
(b) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(c) Hong, Y.; Dai, H.; Ye, L.; Zhong, S.; Cao, X.; Shi, Y.; Li, C.; Shi, J.; Shi, L. Chin. J. Org. Chem. 2017, 37, 3006 (in Chinese).
(洪宇, 戴红, 叶林玉, 仲苏林, 曹雄飞, 石玉军, 李春建, 石健, 施磊, 有机化学, 2017, 37, 3006.)
(d) Gao, H.; Zheng, X.; Qi, Y.; Wang, S.; Wan, C.; Rao, G.; Mao, Z. Chin. J. Org. Chem. 2018, 38, 648 (in Chinese).
(高慧, 郑喜, 祁燕, 王斯, 万春平, 饶高雄, 毛泽伟, 有机化学, 2018, 38, 648.)
(e) Qiao, L.; Wei, Y.; Hao, S. Chin. J. Org. Chem. 2018, 38, 509 (in Chinese).
(乔丽丽, 魏艳, 郝双红, 有机化学, 2018, 38, 509.)
[2] (a) Han, S.-Y.; Kim, Y.-A. Tetrahedron 2004, 60, 2447.
(b) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827.
(c) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev. 2014, 43, 2714.
(d) El-Faham, A.; Albericio, F. Chem. Rev. 2011, 111, 6557.
(e) de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116, 12029.
(f) Yang, J.; Zhao, J. Sci. China Chem. 2018, 61, 97.
(g) Dong, H.; Hou, M. Chin. J. Org. Chem. 2017, 37, 267 (in Chinese).
(董浩, 侯梅芳, 有机化学, 2017, 37, 267.)
(h) Yu, X.; Zhou, F.; Chen, J.; Xiao, W. Acta Chim. Sinica 2017, 75, 86 (in Chinese).
(余晓叶, 周帆, 陈加荣, 肖文精, 化学学报, 2017, 75, 86.)
[3] (a) Sasaki, K.; Crich, D. Org. Lett. 2011, 13, 2256.
(b) Pan, J.; Devarie-Baez, N. O.; Xian, M. Org. Lett. 2011, 13, 1092.
(c) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem., Int. Ed. 2012, 51, 3231.
(d) Sun, X.; Wang, M.; Li, P.; Zhang, X.; Wang, L. Green Chem. 2013, 15, 3289.
(e) Li, D.; Wang, M.; Liu, J.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 3640.
(f) Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502.
(g) Tang, C.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 6528.
(h) Schäfer, G.; Bode, J. W. Org. Lett. 2014, 16, 1526.
(i) Du, H.; Ruan, Q.; Qi, M.; Han, W. J. Org. Chem. 2015, 80, 7816.
(j) Lim, D. S. W.; Lew, T. T. S.; Zhang, Y. Org. Lett. 2015, 17, 6054.
(k) Debnath, P.; Baeten, M.; Lefèvre, N.; Daele, S. V.; Maes, B. U. W. Adv. Synth. Catal. 2015, 357, 197.
(l) Ali, M. A.; Yao, X.; Sun, H.; Lu, H. Org. Lett. 2015, 17, 1513.
(m) Han, W.; Jin, F.; Zhao, Q.; Du, H.; Yao, L. Synlett 2016, 27, 1854.
(n) Gu, L.; Wang, W.; Liu, J.; Li, G.; Yuan, M. Green Chem. 2016, 18, 2604.
(o) Kaishap, P. P.; Sarma, B.; Gogoi, S. Chem. Commun. 2016, 52, 9809.
(p) Ren, L.; Li, X.; Jiao, N. Org. Lett. 2016, 18, 5852.
(q) Xie, S.; Zhang, Y.; Ramstrom, O.; Yan, M. Chem. Sci. 2016, 7, 713.
(r) Yang, S.; Li, P.; Wang, Z.; Wang, L. Org. Lett. 2017, 19, 3386.
(s) Ji, W.; Li, P.; Yang, S.; Wang, L. Chem. Commun. 2017, 53, 8482.
(t) Liu, Y.; Zhang, Y.; Wan, J.-P. J. Org. Chem. 2017, 82, 8950.
(u) Yan, Y.; Zhang, Z.; Wan, Y.; Zhang, G.; Ma, N.; Liu, Q. J. Org. Chem. 2017, 82, 7957.
(v) Zhang, W.; Hu, C.; Zhou, X. Chin. J. Org. Chem. 2017, 37, 1246 (in Chinese).
(张伟, 胡晨旭, 周向葛, 有机化学, 2017, 37, 1246.)
(w) Li, X.; Jia, X.; Ma, J.; Xu, Y.; Huang, Y.; Xu, J. Chin. J. Chem. 2017, 35, 984.
(x) Gao, P.; Bai, Z. Chin. J. Chem. 2017, 35, 1673.
(y) Zhang, J.-R.; Liao, Y.-Y.; Deng, J.-C.; Tang, Z.-L.; Xu, Y.-L.; Xu, L.; Tang, R.-Y. Asian J. Org. Chem. 2017, 6, 305.
(z) Meng, T.; Feng, C.; Lantao, L.; Wang, T.; Xu, K.; Zhao, W. Chin. J. Org. Chem. 2016, 36, 1382 (in Chinese).
(孟团结, 冯翠兰, 刘澜涛, 王涛, 许凯, 赵文献, 有机化学, 2016, 36, 1382.)
[4] Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
[5] Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
[6] Schäfer, G.; Matthey, C.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 9173.
[7] Lew, T. T. S.; Lim, D. S. W.; Zhang, Y. Green Chem. 2015, 17, 5140.
[8] Zhu, Y.-P.; Sergeyev, S.; Franck, P.; Orru, R. V. A.; Maes, B. U. W. Org. Lett. 2016, 18, 4602.
[9] Mampuys, P.; Zhu, Y.; Vlaar, T.; Ruijter, E.; Orru, R. V. A.; Maes, B. U. W. Angew. Chem., Int. Ed. 2014, 53, 12849.
[10] Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
[11] Chen, W.; Shao, J.; Hu, M.; Yu, W.; Giulianotti, M. A.; Houghten, R. A.; Yu, Y. Chem. Sci. 2013, 4, 970.
[12] (a) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
(b) He, W.; Xie, L.; Xu, Y.; Xiang, J.; Zhang, L. Org. Biomol. Chem. 2012, 10, 3168.
(c) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.
(d) Wu, C.; Liang, Z.-W.; Xu, Y.-Y.; He, W.-M.; Xiang, J.-N. Chin. Chem. Lett. 2013, 24, 1064.
(e) Li, L.; Xie, L.; Wang, F.; He, W.; Xiang, J. Chin. J. Org. Chem. 2014, 34, 1864 (in Chinese).
(黎龙香, 谢龙勇, 王风君, 何卫民, 向建南, 有机化学, 2014, 34, 1864.)
(f) Xie, L.; Yuan, R.; Wang, R.; Peng, Z.; Xiang, J.; He, W. Eur. J. Org. Chem. 2014, 2668.
(g) Xiang, J.; Yuan, R.; Wang, R.; Yi, N.; Lu, L.; Zou, H.; He, W. J. Org. Chem. 2014, 79, 11378.
(h) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu, W.; He, W. J. Org. Chem. 2015, 80, 5023.
(i) Xiang, J.; Yi, N.; Wang, R.; Lu, L.; Zou, H.; Pan, Y.; He, W. Tetrahedron 2015, 71, 694.
(j) Wu, C.; Yang, P.; Fu, Z.; Peng, Y.; Wang, X.; Zhang, Z.; Liu, F.; Li, W.; Li, Z.; He, W. J. Org. Chem. 2016, 81, 10664.
(k) Jiang, J.; Zou, H.; Dong, Q.; Wang, R.; Lu, L.; Zhu, Y.; He, W. J. Org. Chem. 2016, 81, 51.
(l) Zou, H.; He, W.; Dong, Q.; Wang, R.; Yi, N.; Jiang, J.; Pen, D.; He, W. Eur. J. Org. Chem. 2016, 2016, 116.
(m) Pan, Y.; Chen, G.-W.; Shen, C.-H.; He, W.; Ye, L.-W. Org. Chem. Front. 2016, 3, 491.
(n) Li, W.; Yin, G.; Huang, L.; Xiao, Y.; Fu, Z.; Xin, X.; Liu, F.; Li, Z.; He, W. Green Chem. 2016, 18, 4879.
(o) Xie, L.-Y.; Duan, Y.; Lu, L.-H.; Li, Y.-J.; Peng, S.; Wu, C.; Liu, K.-J.; Wang, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2017, 5, 10407.
(p) Wu, C.; Xin, X.; Fu, Z.-M.; Xie, L.-Y.; Liu, K.-J.; Wang, Z.; Li, W.; Yuan, Z.-H.; He, W.-M. Green Chem. 2017, 19, 1983.
(q) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
(r) Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.
(s) Liu, K.-J.; Fu, Y.-L.; Xie, L.-Y.; Wu, C.; He, W.-B.; Peng, S.; Wang, Z.; Bao, W.-H.; Cao, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 4916.
(t) Liu, K.-J.; Si, J.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu. X. Green Chem. 2018, 10.1039/C8GC00223A.
[13] Han, K.-J.; Tae, B. S.; Kim, M. Org. Prep. Proced. Int. 2005, 37, 198.
[14] Tsukamoto, H.; Suzuki, R.; Kondo, Y. J. Comb. Chem. 2006, 8, 289.
[15] Ramalingan, C.; Park, Y.-T. J. Org. Chem. 2007, 72, 4536.
[16] Hosseini-Sarvari, M.; Sodagar, E.; Doroodmand, M. M. J. Org. Chem. 2011, 76, 2853.
[17] Chiang, P.-C.; Kim, Y.; Bode, J. W. Chem. Commun. 2009, 4566.
[18] Jeddeloh, M. R.; Holden, J. B.; Nouri, D. H.; Kurth, M. J. J. Comb. Chem. 2007, 9, 1041.
[19] Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240.
[20] Youn, S. W.; Bihn, J. H.; Kim, B. S. Org. Lett. 2011, 13, 3738.
[21] Yang, Y.-H.; Shi, M. J. Org. Chem. 2005, 70, 8645.
[22] Ye, W.; Mo, J.; Zhao, T.; Xu, B. Chem. Commun. 2009, 3246.
[23] Wu, W.; Zhang, Z.; Liebeskind, L. S. J. Am. Chem. Soc. 2011, 133, 14256.
[24] Zhang, L.; Su, S.; Wu, H.; Wang, S. Tetrahedron 2009, 65, 10022.
[25] Wang, Y.; Zhu, D.; Tang, L.; Wang, S.; Wang, Z. Angew. Chem., Int. Ed. 2011, 50, 8917.
[26] Lagerlund, O.; Larhed, M. J. Comb. Chem. 2006, 8, 4.
[27] Jørgensen, C. G.; Frølund, B.; Kehler, J.; Jensen, A. A. ChemMedChem 2011, 6, 725.
[28] Kumar, S.; Singh, H. B. J. Chem. Sci. 2005, 117, 621.
[29] Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605.
[30] Liu, H.; Wang, X.; Gu, Y. Org. Biomol. Chem. 2011, 9, 1614.
[31] Prakash, G. K. S.; Moran, M. D.; Mathew, T.; Olah, G. A. J. Fluorine Chem. 2009, 130, 806.
[32] O'Conner, C.; McLennan, D.; Calvert, D.; Lomax, T.; Porter, A.; Rogers, D. Aust. J. Chem. 1984, 37, 497.
[33] Chrétien, J.-M.; Zammattio, F.; Le Grognec, E.; Paris, M.; Cahingt, B.; Montavon, G.; Quintard, J.-P. J. Org. Chem. 2005, 70, 2870.
[34] Knauber, T.; Arikan, F.; Röschenthaler, G.-V.; Gooßen, L. J. Chem.-Eur. J. 2011, 17, 2689.
[35] Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50, 3793.
[36] Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D. S.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 632.
[37] Kim, B. S.; Jang, C.; Lee, D. J.; Youn, S. W. Chem. Asian J. 2010, 5, 2336.
[38] Heys, J. R.; Elmore, C. S. J. Labelled Compd. Radiopharm. 2009, 52, 189.
[39] Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, M.; Ghorbani, E. Chin. J. Chem. 2008, 26, 2120.
/
〈 |
|
〉 |