二氟甲基化方法研究进展
收稿日期: 2018-01-28
修回日期: 2018-04-02
网络出版日期: 2018-04-27
基金资助
陕西省重点研发计划(Nos.2017ZDXM-GY-042,2017ZDXM-GY-070)资助项目.
Recent Progress on Difluoromethylation Methods
Received date: 2018-01-28
Revised date: 2018-04-02
Online published: 2018-04-27
Supported by
Project supported by the Key Research and Development Projects of Shanxi Province (Nos. 2017ZDXM-GY-042, 2017ZDXM-GY-070).
王为强, 余秦伟, 张前, 李江伟, 惠丰, 杨建明, 吕剑 . 二氟甲基化方法研究进展[J]. 有机化学, 2018 , 38(7) : 1569 -1585 . DOI: 10.6023/cjoc201801041
The difluoromethyl functional group (CF2H) which has strong lipophilic and electron-withdrawing properties can significantly enhance the physiological activity of organic molecules. The applications of CF2H-containing compounds in the fields of drugs, agrochemicals and so on have attracted great attention of many research groups. Therefore, the development of effective and general methodologies for the selective incorporation of difluoromethyl groups has become one of the hotspots in the field of organic chemistry. Recently, new difluoromethylation reagents and methods that were able to efficiently incorporate the difluoromethyl group under mild conditions have been developed rapidly, that pave the way for the facile introduction of difluoromethyl group into site-specific positions of the target molecules. In this paper, we will first briefly introduce some organic molecules with different functional groups which can be difluoromethylated, and then focus on the development of the recent high-performance difluoromethylation reagents, new reactions and catalysts. Finally, we will discuss the remaining problems and challenges in this particular field.
[1] (a) Vulpetti, A.; Dalvit, C. Drug Discovery Today 2012, 17, 890.
(b) Wang, J.; Sánchez-Roselló, M.; Acea, J. L.; Pozo, C. D.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[2] (a) Mìller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester (UK), 2009.
[3] (a) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(b) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48, 2929.
(c) Koike, T.; Akita, M. J. Fluorine Chem. 2014, 167, 30.
(d) Merino, E.; Nevado, C. Chem. Rev. Soc. 2014, 43, 6598.
(e) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
[4] (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2415.
(b) Barata-Vallejo, S.; Bonesi, S.; Postigo, A. Org. Biomol. Chem. 2016, 14, 7150.
(c) Shi, J.; Ren, G.; Wu, N.; Liu, X.; Xu, T.; Tan, C. Chin. J. Org. Chem. 2017, 37, 2131 (in Chinese).
(史建俊, 任贵华, 吴宁捷, 刘幸海, 许天明, 谭成侠, 有机化学, 2017, 37, 2131.)
(d) Hu, C.; Liu, J.; Du, X. Chin. J. Org. Chem. 2016, 36, 1051 (in Chinese).
(胡崇波, 刘建华, 杜晓华, 有机化学, 2016, 36, 1051.)
[5] (a) Kirsch, P. Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim (Germany), 2013.
(b) Besset, T.; Poisson, T.; Pannecoucke, X. Eur. J. Org. Chem. 2015, 2765.
[6] (a) Xiong, H.; Pannecoucke, X.; Besset, T. Chem. Eur. J. 2016, 22, 16734.
(b) Bos, M.; Poisson, T.; Pannecoucke, X.; Charette, A. B.; Jubault, P. Chem. Eur. J. 2017, 23, 4950.
(c) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.
(d) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem. Eur. J. 2017, 23, 14676.
(e) Zhang, X.; Cao, S. Tetrahedron Lett. 2017, 58, 375.
(f) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90 (in Chinese).
(倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
[7] (a) Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
(b) Huang, C.-H.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308.
(c) Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M.-Y. Angew. Chem., Int. Ed. 2014, 53, 14559.
(d) Shen, X.; Zhou, M.; Ni, C.-F.; Zhang, W.; Hu, J.-B. Chem. Sci. 2014, 5, 117.
(e) Huang, R.; Huang, Y.; Lin, X.; Rong, M.; Weng, Z. Angew. Chem. 2015, 127, 5828.
(f) Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048.
(g) Feng, P.; Lee, K. N.; Lee, J. W.; Zhan, C.; Ngai, M.-Y. Chem. Sci. 2016, 7, 424.
[8] Chauret, N.; Guay, D.; Li, C.; Day, S.; Silva, J.; blouin, M.; Ducharme, Y.; Yergey, J. A.; Nicoli-Griffith, D. A. Bioorg. Med. Chem. Lett. 2002, 12, 2149.
[9] Mizukado, J.; Matsukawa, Y.; Quan, H.-D.; Tamura, M.; Sekiya, A. J. Fluorine Chem. 2006, 127, 400.
[10] Flynn, R. M.; Burton, D. J. J. Fluorine Chem. 2011, 132, 815.
[11] (a) Fedorov, O. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2016, 81, 9455.
(b) Song, X.; Tian, S.; Zhao, Z.; Zhu, D.; Wang, M. Org. Lett. 2016, 18, 3414.
[12] Mizukado, J.; Matsukawa, Y.; Quan, H.-D.; Tamura, M.; Sekiya, A. J. Fluorine Chem. 2005, 126, 365.
[13] Miethchen, R.; Hein, M.; Naumann, D.; Tyrra, W. Eur. J. Org. Chem. 1995, 1995, 1717.
[14] Levchenko, K.; Datsenko, O. P.; Serhiichuk, O.; Tolmachev, A.; Iaroshenko, V. O.; Mykhailiuk, P. K. J. Org. Chem. 2016, 81, 5803.
[15] Fier, P. S.; Hartwig, J. F. Angew. Chem. 2013, 125, 2146.
[16] Zhang, W.; Mao, W.; Wang, B.; Zeng, J.; Yang, J.; Lü, J. Sci. Sin. Chim. 2017, 47, 1312 (in Chinese).
(张伟, 毛伟, 王博, 曾纪珺, 杨建明, 吕剑, 中国科学:化学, 2017, 47, 1312.)
[17] (a) Piou, A.; Celerier, S.; Brunet, S. J. Fluorine Chem. 2012, 134, 103.
(b) Dolbier Jr., W. R.; Wang, F.; Tang, X.; Thomoson, C. S.; Wang, L. J. Fluorine Chem. 2014, 160, 72.
[18] (a) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Ni, C.-F.; Olah, G. A. J. Fluorine Chem. 2011, 132, 792.
(b) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863.
[19] Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 1.
[20] (a) Wang, F.; Zhang, W.; Zhu, J.; Li, H.; Huang, K.-W.; Hu, J. Chem. Commun. 2011, 47, 2411.
(b) Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem. 2013, 125, 12616.
(c) Ni, C.; Hu, J. Synthesis 2014, 46, 842.
[21] Xie, Q.; Ni, C.; Zhang, R.; Li, L.; Rong, J.; Hu, J. Angew. Chem., 2017, 129, 3254.
[22] (a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
(b) Jeanmart, S.; F. Edmunds, A. J.; Lamberth, C.; Pouliot, M. Bioorg. Med. Chem. 2016, 24, 317.
[23] Thomoson, C. S.; Dolbier Jr., W. R. J. Org. Chem. 2013, 78, 8904.
[24] Mehta, V. P.; Greaney, M. F. Org. Lett. 2013, 15, 5036.
[25] Prakash, G. K. S.; Krishnamoorthy, S.; Kar, S.; Olah, G. A. J. Fluorine Chem. 2015, 180, 186.
[26] Ma, J.; Liu, Q.; Lu, G.; Yi, W. J. Fluorine Chem. 2017, 193, 113.
[27] Zhang, C. Adv. Synth. Catal. 2017, 359, 372.
[28] Heine, N. B., Studer, A. Org. Lett. 2017, 19, 4150.
[29] Yang, J., Jiang, M., Jin, Y., Yang, H., Fu, H. Org. Lett. 2017, 19, 2758
[30] (a) Medebielle, M.; Dolbier, W. R., Jr J. Fluorine Chem. 2008, 129, 930.
(b) Dilman, A. D.; Levin, V. V. Eur. J. Org. Chem. 2011, 2011, 831.
(c) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
(d) Alonso, C.; de Marigorta, E. M.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
[31] Deng, Z.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Org. Lett. 2016, 18, 3206.
[32] Krishnamoorthy, S., Prakash, G. K. S. Synthesis 2017, 49, 3394.
[33] Krishnamoorthy, S.; Kothandaraman, J.; Saldana, J.; Prakash, G. K. S. Eur. J. Org. Chem. 2016, 29, 4965.
[34] Hagiwara, T.; Fuchikami, T. Synlett 1995, 717.
[35] Zhao, Y.; Huang, W.; Zheng, J.; Hu, J. Org. Lett. 2011, 13, 5342.
[36] Chen, D.; Ni, C.; Zhao, Y.; Cai, X.; Li, X.; Xiao, P.; Hu, J. Angew. Chem., Int. Ed. 2016, 55, 12632.
[37] Trifonov, A. L.; Zemtsov, A. A.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2016, 18, 3458.
[38] (a) Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868.
(b) Liang, T.; Neumann C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
[39] (a) Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. J. Fluorine Chem. 2004, 125, 509.
(b) Murakami, S.; Ishii, H.; Tajima, T.; Fuchigami, T. Tetrahedron 2006, 62, 3761.
(c) Leung, L.; Linclau, B. J. Fluorine Chem. 2008, 129, 986.
(d) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.
(e) Wallentin, C. J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
(f) Belhomme, M.-C.; Poisson, T.; Pannecoucke, X. Org. Lett. 2013, 15, 3428.
[40] Yu, C.; Iqbal, N.; Park S.; Cho, E. J. Chem. Commun. 2014, 50, 12884.
[41] Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem. Eur. J. 2016, 22, 1262.
[42] Pannecoucke, X.; Poisson, T. Synlett 2016, 27, 2314.
[43] (a) Wang, X.; Zhao, S.; Liu, J.; Zhu, D.; Guo, M.; Tang, X.; Wang, G. Org. Lett. 2017, 19, 4187.
(b) Chen, H.; Wang, X.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Org. Chem. Front. 2017, 4, 2403.
[44] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51.
[45] (a) Gu, Y.; Leng, X.; Shen, Q. Nat. Commun. 2014, 5, 5405.
(b) Wu, J.; Liu, Y.; Lu, C.; Shen, Q. Chem. Sci. 2016, 7, 3757.
(c) Lu, C.; Gu, Y.; Wu, J.; Gu, Y.; Shen, Q. Chem. Sci. 2017, 8, 4848.
[46] Xu, L.; Vicic, D. A. J. Am. Chem. Soc. 2016, 138, 2536.
[47] Aikawa, K.; Serizawa, H.; Ishii, K.; Mikami, K. Org. Lett. 2016, 18, 3690
[48] Serizawa, H.; Ishii, K.; Aikawa, K.; Mikami, K. Org. Lett. 2016, 18, 3686.
[49] (a) Ge, S.; Chaladaj, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149.
(b) Rong, J.; Ni, C.; Hu, J. Asian J. Org. Chem. 2017, 6, 139.
[50] Bour, J. R.; Kariofillis, S. K.; Sanford, M. S. Organometallics 2017, 36, 1220.
[51] Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880.
[52] Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494.
[53] Tung, T. T.; Christensen, S. B.; Nielsen, J. Chem.-Eur. J. 2017, 23, 18125.
[54] (a) Ohtsuka, Y.; Yamakawa, T. Tetrahedron 2011, 67, 2323.
(b) Lin, Q.; Chu, L.; Qing, F.-L. Chin. J. Chem. 2013, 31, 885.
(c) Jung, J.; Kim, E.; You, Y.; Cho, E. J. Adv. Synth. Catal. 2014, 356, 2741.
[55] Li, J.; Wan, W.; Ma, G.; Chen, Y.; Hu, Q.; Kang, K.; Jiang, H.; Hao, J. Eur. J. Org. Chem. 2016, 4916.
[56] Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 934.
[57] Ismalaj, E.; Glenadel, Q.; Billard, T. Eur. J. Org. Chem. 2017, 1911.
[58] Feng, Z.; Min, Q.; Zhang, X. Org. Lett. 2016, 18, 44.
[59] Deng, X. Y.; Lin, J. H.; Xiao, J. C. Org. Lett. 2016, 18, 4384.
[60] Feng, Z.; Min, Q.; Fu, X.; An, L.; Zhang, X. Nat. Chem. 2017, 9, 918.
[61] Fu, X. P.; Xiao, Y. L.; Zhang, X. Chin. J. Chem. 2018, 36, 143.
[62] Sheng, J.; Ni, H. Q.; Bian, K. J.; Li, Y.; Wang, Y. N.; Wang, X. S. Org. Chem. Front. 2018, 5, 606.
[63] (a) Lui, N.; Pazenok, S.; Shermolovich, Y. G. US 2011/0060167, 2011.
(b) Antons, S.; Lui, N.; Gerlach, A. US 2011/0082318, 2011.
(c) Thomas, R.; Ansgar, A.; Christian, M. WO 2016/023773, 2016.
(d) Norbert, M. T.; Norbert, L.; Stefan, M. US 20140243561, 2014.
[64] (a) Yun, J.; Yang, J. M.; Lu, J.; Zhang, Q.; Li, J. W.; Zhao, F. W.; Yu, Q. W.; Mei, S. N.; Wang, W. Q.; Li, Y. N.; Hui, F. CN 106831338, 2017.
(b) Yun, J.; Yang, J. M.; Lu, J.; Hui, F.; Li, Y. N.; Zhang, Q.; Li, J. W.; Zhao, F. W.; Yu, Q. W.; Wang, W. Q.; Mei, S. N. CN 106810421, 2017.
(c) Sun, D. A.; Li, C. Y.; Du, Y. M.; Zhang, W.; Zhang, J. W..; Ma, Y. B.; Zeng J. J.; Lu, J. J. Mol. Catal. 2013, 27, 242 (in Chinese). (孙道安, 李春迎, 杜咏梅, 张伟, 张建伟, 马洋博, 曾纪珺, 吕剑, 分子催化, 2013, 27, 242.)
[65] (a) Wang, Q.; Yu, X.; Jin, J.; Wu, Y.; Liang, Y. Chin. J. Chem. 2018, 36, 223.
(b) Zhou, N.; Xu, P.; Li, W.; Cheng, Y.; Zhu, C. Acta Chim. Sinica 2017, 75, 60 (in Chinese).
(周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60.)
[66] (a) Fujita, T.; Sanada, S.; Chiba, Y.; Sugiyama, K.; Ichikawa, J. Org. Lett. 2014, 16, 1398.
(b) Fujita, T.; Sugiyama, K.; Sanada, S.; Ichitsuka, T.; Ichikawa, J. Org. Lett. 2016, 18, 248.
[67] Mykhailiuk, P. K. Angew. Chem., Int. Ed. 2015, 54, 1.
[68] Li, J.; X.-L.; Yu, Cossy, J.; Lv, S.-Y.; Zhang, H.-L.; Su, F.; Mykhailiuk, P. K.; Wu, Y. Eur. J. Org. Chem. 2017, 2017, 266.
[69] Nawrot, E.; Jonczyk, A. J. Org. Chem. 2007, 72, 10258.
[70] Zafrani, Y.; Amir, D.; Yehezkel, L.; Madmon, M.; Saphier, S.; Karton-Lifshin, N.; Gershonov, E. J. Org. Chem. 2016, 81, 9180.
/
〈 |
|
〉 |