研究论文

介孔分子筛MCM-41固载席夫碱与Cu(ClO4)2·6H2O催化合成螺[吲哚-噻唑啉酮]衍生物

  • 侯亚东 ,
  • 庞海霞 ,
  • 杨超 ,
  • 惠永海
展开
  • a 新疆大学化学化工学院 石油天然气精细化工教育部重点实验室 乌鲁木齐 830046;
    b 岭南师范学院化学化工学院 湛江 524048

收稿日期: 2018-01-26

  修回日期: 2018-04-18

  网络出版日期: 2018-05-03

基金资助

国家自然科学基金(Nos.21362036,51564045)资助项目.

Mesoporous MCM-41 Supported Schiff Base-Cu(ClO4)2·6H2O Catalyzed Synthesis of Spiro[indole-thiazolidine] Derivatives

  • Hou Yadong ,
  • Pang Haixia ,
  • Yang Chao ,
  • HuiYonghai
Expand
  • a Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046;
    b School of Chemistry and Chemistry Engineering, Lingnan Normal University, Zhanjiang 524048

Received date: 2018-01-26

  Revised date: 2018-04-18

  Online published: 2018-05-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21362036, 51564045).

摘要

利用介孔分子筛纳米反应器MCM-41@席夫碱-Cu(ClO42·6H2O作为非均相催化剂,简单高效地催化靛红-3-亚胺和巯基乙酸进行迈克尔加成-缩合反应,合成了一系列的螺[吲哚-噻唑啉酮]衍生物,收率最高可达99%.另外,发现具有相同官能团的非均相催化剂比均相催化剂表现出更好的催化效果,并进一步探索了介孔分子筛纳米反应器MCM-41孔道结构对该反应的影响.此类催化剂可回收再利用,催化循环6次后仍能得到93%的产率.

本文引用格式

侯亚东 , 庞海霞 , 杨超 , 惠永海 . 介孔分子筛MCM-41固载席夫碱与Cu(ClO4)2·6H2O催化合成螺[吲哚-噻唑啉酮]衍生物[J]. 有机化学, 2018 , 38(8) : 2036 -2044 . DOI: 10.6023/cjoc201801039

Abstract

Herein, Michael addition-condensation of isatin-3-imines with mercaptoacetic acid to afford a new simple and efficient synthesis of spiro[indole-thiazolidine] derivatives in high yield (up to 99%) by using of MCM-41@Schiff base-Cu(ClO4)2·6H2O as heterogeneous catalyst is reported. In addition, it is found that heterogeneous catalyst exhibits better activity than homogeneous catalyst in the same functional groups. The effect of the pore structure on mesoporous molecular sieve nanoreactor MCM-41 for this reaction is further explored. Consistent activity of recovered catalyst was found to be almost same up to six cycles in 93% yield.

参考文献

[1] Abhinit, M.; Ghodke, M.; Pratima, N. A. Int. J. Pharm. 2009, 1, 47.
[2] Singh, S. P.; Parmar, S. S.; Raman, K.; Stenberg, V. I. Chem. Rev. 1981, 12, 175.
[3] Sharma, M. C.; Sahu, N. K.; Kohli, D. V.; Chaturvedi, S. C.; Sharma, S. Dig. J. Nannomater. Bios. 2009, 4, 361.
[4] Rajopadhye, M.; Popp, F. D. J. Heterocycl. Chem. 2010, 24, 1637.
[5] Sweetman, B. J.; Bellas, M.; Field, L. J. Med. Chem. 1969, 12, 888.
[6] Li, Y. J.; Li, C. Y.; Jin, K.; Sun, S. Q.; Zhou, X. X. Acta Chim. Sinica 2012, 70, 151(in Chinese). (李英俊, 李春燕, 靳焜, 孙淑琴, 周晓霞, 化学学报, 2012, 70, 151.)
[7] Kitano, M.; Yagisawa, M.; Morimoto, Y. EP 387028, 1990[Chem. Abstr. 1991, 114, 101981].
[8] Panda, S. S.; Jain, S. C. Monatsh. Chem. 2012, 143, 1187.
[9] Dandia, A.; Singh, R.; Bhaskaran, S.; Samant, S. D. Green Chem. 2011, 13, 1852.
[10] Zahed, K.-J.; Zahra, L. Org. Chem.:Indian J. 2013, 9, 504.
[11] Pandey, M.; Raghuvanshi, D. S.; Singh, K. N. J. Heterocycl. Chem. 2009, 46, 49.
[12] Diurno, M. V.; Mazzoni, O.; Piscopo, E.; Bolognese, A. Farmaco 1993, 48, 435.
[13] Preetam, A.; Nath, M. Tetrahedron Lett. 2016, 47, 1502.
[14] Rajopadhye, M.; Popp, F. D. J. Heterocycl. Chem. 1987, 24, 1637.
[15] Arya, K.; Rawat, D. S.; Dandia, A.; Sasai, H. J. Fluorine Chem. 2012, 137, 117.
[16] Ji, X.; Xu, L.; Du, X.; Lu, X.; Lu, W.; Sun, J.; Wu, P. Catal. Sci. Technol. 2017, 7, 2874.
[17] Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
[18] Liu, R.; Zhang, Y.; Feng, P. J. Am. Chem. Soc. 2009, 131, 15128.
[19] Liu, R.; Zhao, X.; Wu, T.; Feng, P. J. Am. Chem. Soc. 2008, 130, 14418.
[20] Ostafin, A.; Landfester, K. Nanoreactor Engineering for Life Sciences and Medicine, Artech House, Boston, 2009, pp. 1~45.
[21] Reath, A. H.; Ziller, J. W.; Tsay, C.; Ryan, A. J.; Yang, J. Y. Inorg. Chem. 2017, 56, 3713.
[22] Zhang, W.; Shi, T.; Ding, G.; Punyapitak, D.; Zhu, J.; Guo, D.; Zhang, Z.; Li, J.; Cao, Y. ACS Sustainable Chem. Eng. 2016, 5, 502.
[23] Pang, H. X.; Hui, Y. H.; Fan, K.; Xing, X. J.; Wu, Y.; Yang, J. H.; Shi, W.; Xie, Z. F. Chin. Chem. Lett. 2016, 47, 335.
[24] Ljubijankic, N.; Zahirovic, A.; Turkušic, E.; Kahrovic, E. Croat. Chem. Acta 2013, 86, 215.
[25] Wang, D. X. Solid-Phase Organic Synthesis:Principle and Application Guide, Chemical Industry Press, Beijing, 2004(in Chinese). (王德心, 固相有机合成, 原理及应用指南, 化学工业出版社, 北京, 2004.)
[26] Brehma, E.; Breinbauer, R. Org. Biomol. Chem. 2013, 11, 4750.
[27] Xie, S.; Hui, Y.; Wang, C.; Xie, Z. Chin. J. Org. Chem. 2013, 33, 971(in Chinese). (谢绍雷, 惠永海, 王长春, 解正峰, 有机化学, 2013, 33, 971.)
[28] Fan, K.; Hui, Y. H.; Hu, X. M.; Shi, W.; Pang, H. X.; Xie, Z. F. New J. Chem. 2015, 39, 5916.
[29] Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550.
[30] Preetam, A.; Nath, M. Tetrahedron Lett. 2016, 47, 1502.
[31] Fu, Y.-H.; Shi, H.-L.; Zhou, G.-P.; Hui, Y.-H.; Xie, Z.-F. Chin. J. Appl. Chem. 2015, 32, 1260(in Chinese). (付亚红, 师红丽, 周广鹏, 惠永海, 解正峰, 应用化学, 2015, 32, 1260.)

文章导航

/