综述与进展

基于全氟烷基磺酰亚胺催化剂合成、固载及催化应用研究进展

  • 洪梅 ,
  • 闵洁 ,
  • 王石发
展开
  • 南京林业大学化工学院 江苏省生物质绿色燃料与化学品重点实验室 南京 210037

收稿日期: 2018-01-08

  修回日期: 2018-03-30

  网络出版日期: 2018-05-03

基金资助

江苏省自然科学基金(No.BK20140969)、江苏高校优势学科建设工程(PAPD)和江苏省生物质能源与材料重点实验室开放基金(No.JSBEM201603)资助项目.

Research Progress of the Synthesis, Immobilization Bis(perfluoro-alkylsulfonyl)imide-Based Complexes and Application in Heterogeneous Catalysis

  • Hong Mei ,
  • Min Jie ,
  • Wang Shifa
Expand
  • Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037

Received date: 2018-01-08

  Revised date: 2018-03-30

  Online published: 2018-05-03

Supported by

Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20140969), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Open Fund of Jiangsu Key Laboratory of Biomass Energy and Materials (No. JSBEM201603).

摘要

普通的液体酸催化剂在应用过程中难免产生环境问题,全氟烷基磺酰亚胺配合物因其特殊的阴离子结构以及所具有的超酸性质而在新型催化领域表现出广泛的应用前景.介绍了全氟烷基磺酰亚胺配合物的结构与性能特点,综述了近年来全氟烷基磺酰亚胺及其配合物的制备方法,重点阐述了全氟烷基磺酰亚胺及其配合物固载化的方法及在催化反应中的最新研究进展,以期对其催化性能和应用前景有比较全面的认识.

本文引用格式

洪梅 , 闵洁 , 王石发 . 基于全氟烷基磺酰亚胺催化剂合成、固载及催化应用研究进展[J]. 有机化学, 2018 , 38(8) : 1907 -1916 . DOI: 10.6023/cjoc201801013

Abstract

Traditional liquid acid catalysts have environmental problems during their application. Perfluoroalkylsulfonylimide complexes show a wide application in catalysis due to their special anionic structures and super acid properties. The structures and properties of bis(perfluoroalkylsulfonyl)imide complexes are introduced. The synthesis and immobilization methods of bis(perfluoroalkylsulfonyl)imide complexes are summarized. The use of immobilized bis(perfluoroalkylsulfonyl)imide complexes in catalytic reactions is also reviewed. The development trends of perfluoroalkylsulfonylimide complexes in the catalytic application are prospected.

参考文献

[1] (a) Yamamoto, H. Lewis Acids in Organic Synthesis, Vols. 1& 2, Wiley-VCH, Weinheim, 2000, p. 994.
(b) Santelli, M.; Pons, J. M. Selectivity in Lewis Acid Promoted Reactions, CRC, Baton Rouge, 1995, p. 352.
(c) Akiyama, T. Chem. Rev. 2007, 107, 5744.
(d) Yamamoto, H.; Ishihara, K. Acid Catalysis in Modern Organic Synthesis, Vols. 1& 2, Wiley-VCH, Weinheim, 2008, p. 1662.
[2] (a) Xiao, J.; Zhang, Z.; Nie, J. Prog. Chem. 2005, 17, 137(in Chinese). (肖杰展, 张正波, 聂进, 化学进展, 2005, 17, 137.)
(b) Zhan, X.; Tang, Y.; He, Y.; Zhang, Q.; Chen, F. J. Chem. Eng. Chin. Univ. 2016, 253(in Chinese). (詹晓力, 唐永强, 何逸波, 张庆华, 陈丰秋, 高校化学工程学报, 2016, 253.)
[3] (a) Bochmann, M. Angew. Chem., Int. Ed. Engl. 1992, 31, 1181.
(b) Strauss, S. H. Chem. Rev. 1993, 93, 927.
(c) Seppelt K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1025.
[4] (a) Leito, I.; Raamat, E.; Kütt, A.; Saame, J.; Kipper, K.; Koppel, I. A.; Zhang, M.; Mishima, M.; Yagupolskii, L. M.; Garlyauskayte, R. Y.; Filtov, A. A. J. Phys. Chem. A 2009, 113, 8421.
(b) KoppeI, I. A.; Taft, R. W.; Anvia, F.; Zhu, S.; Hu, L.; Sung, K.; DesMarteau, D. D.; Yagupolskii, L. M.; Yagupolskii, Y. L.; Ignat'ev, N. V.; Kondratenko, N. V.; Volkonskii, A. Y.; Vlasov, V. M.; Notario, R.; Maria P. J. Am. Chem. Soc. 1994, 116, 3047.
[5] (a) Hong, M.; Yao, M.; Pan, H. RSC Adv. 2015, 5, 91558.
(b) Hong, M.; Xiao, G. J. Fluorine Chem. 2012, 140, 121.
(c) Hong, M.; Xiao, G. J. Fluorine Chem. 2013, 146, 11.
[6] Ruff, J. K. Inorg. Chem. 1965, 4, 1446.
[7] Meussdorffer, J. N.; Niederprum, H. Chem.-Ztg. 1972, 96, 582.
[8] (a) Foropoulos, J. J. R.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720.
(b) DesMarteau, D. D.; Witz, M. J. Fluorine Chem. 1991, 52, 7.
[9] (a) Foropoulos, J.; DesMarteau, D. D. J. Am. Chem. Soc. 1982, 104, 4260.
(b) Hu, L. Q.; DesMarteau, D. D. Inorg. Chem. 1993, 32, 5007.
(c) Geiculescu, O. E.; Yang, J.; Blau, H.; Bailey-Walsh, R.; Creager, S. E.; Pennington, W. T.; DesMarteau, D. D. Solid State Ionics 2002, 148, 173.
(d) Singh, S.; DesMarteau, D. D. Inorg. Chem. 1990, 29, 2982.
(e) Xue, L. X.; Padgett, C. W.; DesMarteau, D. D. Solid State Sci. 2002, 4, 1535.
[10] (a) Kobayashi, H.; Nie, J.; Sonoda, T. Chem. Lett. 1995, 24, 307.
(b) Mikami, K.; Kotera, O.; Motoyama, Y.; Sakaguchi, H. Synlett. 1995, 975.
(c) Hao, X. H.; Yoshida, A.; Nishikido, J. J Fluorine Chem. 2006, 127, 193.
[11] (a) Kannan, K.; Choi, J. W.; Iseki, N.; Senthilkumar, K.; Kim, D. H.; Giesy, J. P. Chemosphere 2002, 49, 225.
(b) Kannan, K.; Corsolini, S.; Falandysz, J.; Oehme, G.; Focardi, S.; Giesy, J. P. Sci. Technol. 2002, 36, 3210.
(c) Kannan, K.; Newsted, J.; Halbrook, R. S.; Giesy, J. P. En-viron. Sci. Technol. 2002, 36, 2566.
[12] (a) Olsen, G. W.; Church, T. R.; Miller, J. P.; Burris, J. M.; Hansen, K. J.; Lundberg, J. K.; Armitage, J. B.; Herron, R. M.; Medhdizadehkashi, Z.; Nobiletti, J. B.; O'Neill, E. M.; Mandel, J. H.; Zobel, L. R. Environ. Health Perspect. 2003, 111, 1892.
(b) Olsen, G. W.; Logan, P. W.; Hansen, K. J.; Simpson, C. A.; Burris, J. M.; Burlew, M. M.; Vorarath, P. P.; Venkateswarlu, P.; Schumpert, J. C.; Mandel, J. H. AIHA J. 2003, 64, 651.
(c) Olsen, G. W.; Church, T. R.; Larson, E. B.; van Belle, G.; Lundberg, J. K.; Hansen, K. J.; Burris, J. M.; Mandel, J. H.; Zobel, L. R. Chemosphere 2004, 54, 1599.
(d) Lehmler, H. J. Chemosphere 2005, 58, 1471.
[13] (a) Roesky, H. W.; Holtschneider, G.; Giere, H. H. Z. Naturforsch 1970, 25b, 252.
(b) Meuβdoerffer, J. N.; Niederprüm, H. Chem.-Ztg. 1972, 96, 582.
(c) Bussas, R.; Kresze, G. Liebigs Ann. Chem. 1982, 545.
(d) Podol'skii, A. V.; Kachalkova, M. I.; Ilatovskii, R. E.; Kodess, M. I.; Kolenko, I. P. Russ. J. Org. Chem. 1990, 1242.
[14] Foropoulos, J. J. R.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720.
[15] (a) Beyer, H.; Thieme, E. J. Prakt. Chem. 1966, 31, 293.
(b) Volkov, N. D.; Nazaretyan, V. P.; Yagupol'skii, L. M. Syn-thesis 1979, 972.
(c) Kamigata, N.; Kawakita, O.; Izuoka, A.; Kobayashi, M. J. Org. Chem. 1985, 50, 398.
(d) Zhu, S.-Z. Tetrahedron Lett. 1992, 33, 6503.
(e) Xu, Y.; Zhu, S. Tetrahedron 1999, 55, 13725.
[16] Zhu, S.-Z.; Xu, Y.; Wang, Y.-L.; Peng, W.-M. Chin. J. Chem. 2001, 19, 1259.
[17] Lehmler, H. J.; Rao, R.; Nauduri, D.; Vargo, J. D.; Parkin, S. J. Fluorine Chem. 2007, 128, 595.
[18] Benfodda, Z.; Delon, L.; Guillen, F.; Blancou, H. J. Fluorine Chem. 2007, 128, 1353.
[19] Hong, M.; Cai, C.; Yi, W. J. Fluorine Chem. 2010, 131, 111.
[20] (a) Zhou, Z.; Han, H.; Fu, S.; Chen, H. CN 102617414, 2012[Chem. Abstr. 2012, 157, 345510].
(b) Han, H.; Zhou, Y.; Liu, K.; Nie, J.; Huang, X.; Armand, M.; Zhou, Z. Chem. Lett. 2010, 39, 472.
[21] Michot, C.; Armand, M.; Gauthier, M.; Choquette, Y. US 6319428, 2001.
[22] Howells, R. D.; Lamanna, W. M.; Fanta, A. D.; Waddell, J. US 5874616, 1999[Chem. Abstr. 1999, 130, 184069].
[23] Sogabe, K.; Hasegawa, Y.; Wada, Y.; Kitamura, T.; Yanagid, S. Chem. Lett. 2000, 944.
[24] (a) Iwahori, T.; Mitsuishi, I.; Shiraga, S.; Nakajima, N.; Momose, H.; Ozaki, Y.; Taniguchi, S.; Awata, H.; Ono, T.; Takeuchi, K. Electrochim. Acta 2000, 45, 1509.
(b) Wang, X.; Yasukawa, E.; Kasuya, S. J. Electrochem. Soc. 2000, 147, 2421.
(c) Broussely, M.; Biensan, P.; Simon, B. Electrochim. Acta 1999, 45, 3.
[25] (a) Peyronneau, M.; Arrondo, C.; Vendier, L.; Roques, N.; Le Roux, C. J. Mol. Catal. A 2004, 211, 89.
(b) Repichet, S.; Zwick, A.; Vendier, L.; Le Roux, C.; Dubac, J. Tetrahedron Lett. 2002, 43, 993.
(c) Baudry, D. B.; Dormond, A.; Duris, F.; Bernard, J. M.; Desmurs, J. R. J. Fluorine Chem. 2003, 121, 233.
(d) Earle, M. J.; Hakala, U.; McAuley, B. J.; Nieuwenhuyzen, M.; Ramani, A.; Seddon, K. R. Chem. Commun. 2004, 1368.
[26] Baudrya, D. B.; Dormonda, A.; Durisa, F.; Bernardb, J. M.; Desmursc, J. R. J. Fluorine Chem. 2003, 121, 233.
[27] Xue, L.; Padgett, C. W.; DesMarteau, D. D.; Pennington, W. T. Solid State Sci. 2002, 4, 1535.
[28] (a) Vij, A.; Zheng, Y. Y.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1994, 33, 3281.
(b) Rogers, E. I.; Silvester, D. S.; Ward Jones, S. E.; Aldous, L.; Hardacre, C.; Russell, A. J.; Davies, S. G.; Compton, R. G. J. Phys. Chem. C 2007, 111, 13957.
(c) Serizawa, N.; Katayama, Y.; Miura, T. Electrochim. Acta 2010, 56, 346.
(d) Agel, F.; Pitsch, F.; Krull, F. F.; Schulz, P.; Wessling, M.; Melin, T.; Wasserscheid, P. Phys. Chem. Chem. Phys. 2011, 13, 725.
(e) Williams, D. B.; Stoll, M. E.; Scott, B. L.; Costa, D. A.; Oldham, W. J. Chem. Commun. 2005, 1438.
(f) Arvai, R.; Toulgoat, F.; Langlois, B. R.; Sanchez, J.-Y.; Médebielle, M. Tetrahedron 2009, 65, 5361.
(g) Stricker, M.; Oelkers, B.; Rosenau, C. P.; Sundermeyer, J. Chem.-Eur. J. 2013, 19, 1042.
[29] Arvai, R.; Toulgoat, F.; Langlois, B. R.; Sanchez, J.; Médebielle, M. Tetrahedron 2009, 65, 5361.
[30] (a) Strauss, S. H.; Polyakov, O. G.; Hammel, J. W.; Ivanova, S. M.; Ivanov, S. V.; Havighurst, M. D. US 6114266, 2000[Chem. Abstr. 2000, 133, 228539].
(b) Polyakov, O. G.; Ivanova, S. M.; Gaudinski, C. M.; Miller, S. M.; Anderson, O. P.; Strauss, S. H. Organometallics 1999, 18, 3769.
[31] Haas, A.; Klare, C.; Betz, P.; Bruckmann, J.; Kruger, C.; Tsay, Y. H.; Aubke, F. Inorg. Chem. 1996, 35, 1918.
[32] Picot, A.; Repichet, S.; Le Roux, C.; Dubac, J.; Roques, N. J. Fluorine Chem. 2002, 116, 129.
[33] Antoniotti, S.; Duñach, E. Chem. Commun. 2008, 993.
[34] Shibuya, M.; Fujita, S.; Abe, M.; Yamamoto, Y. ACS Catal. 2017, 7, 2848.
[35] (a) Takasu, A.; Makino, T.; Yamada, S. Macromolecules 2010, 43, 144.
(b) Qiu, T.; Xu, X.; Qian, X. J. Chem. Technol. Biotechnol. 2009, 84, 1051.
[36] Tan, E.; Ung, S.; Corbet, M. Eur. J. Org. Chem. 2016, 1836.
[37] Liu, F.; De Oliveira Vigier, K.; Pera-Titus, M.; Pouilloux, Y.; Clacens, J.; Decampo, F.; Jérôme F. Green Chem. 2013, 15, 901.
[38] Ponra, S.; Vitale, M. R.; Michelet, V.; Ratovelomanana-Vidal, V. J. Org. Chem. 2015, 80, 3250.
[39] Zhao, Y.; Hu, Y.; Wang, C.; Li, X.; Wan, B. J. Org. Chem. 2017, 82, 3935.
[40] Horváth, T. H.; Rabai, J. Science 1994, 266, 72.
[41] Horváth, I, T. Acc. Chem. Res. 1998, 31, 641.
[42] (a) Nishikido, J.; Nakajima, H.; Saeki, T.; Ishii, A.; Mikami, K. Synlett 1998, 1347.
(b) Hao, X. H.; Yoshida, A.; Nishikido, J. Tetrahedron Lett. 2005, 46, 2697.
(c) Hao, X. H.; Yoshida, A.; Nishikido, J. Green Chem. 2004, 6, 566.
(d) Hao, X. H.; Hoshi, N. Chem Lett. 2006, 35, 1102.
[43] Hao, X. H.; Yamazaki, O.; Yoshida, A.; Nishikido, J. Tetrahedron Lett. 2003, 44, 4977.
[44] Wang, L.; Nie, J.; Li, X.; Zhang, Z.; Yin, F. Chin. J. Org. Chem. 2004, 24, 778(in Chinese). (王丽琼, 聂进, 李小永, 张正波, 尹飞, 有机化学, 2004, 24, 778.)
[45] Schager, F.; Bonrath, W. Appl. Catal A:Gen. 2000, 202, 117.
[46] Nishikido, J.; Nasayuki, N.; Yoshida, A.; Nakajima, H.; Matsuoto, Y.; Mikami, K. Synlett 2002, 1613.
[47] Xiao, J. Z.; Zhang, Z. B.; Nie, J. J. Mol. Catal. A:Chem. 2005, 236, 119.
[48] (a) Tzschucke, C. C.; Andrushko, V.; Bannwarth, W. Eur. J. Org. Chem. 2005, 5248.
(b) Hensle, E. M.; Bannwarth, W. Helv. Chim. Acta 2012, 95, 2072.
(c) Hong, M.; Xiao, G. J. Fluorine Chem. 2012, 144, 7.
[49] Yamazaki, O.; Hao, X. H.; Yoshida, A.; Nishikido, J. Tetrahedron Lett. 2003, 44, 8791.
[50] (a) Hoshino, M.; Degenkolb, P.; Curran, D. P. J. Org. Chem. 1997, 62, 8341.
(b) Berendsen, G. E., Galan, L. D. J. Liquid Chromatogr. 1978, 1, 403.
(c) Billiet, H. A. H.; Schoenmakers, P. J.; De Galan, L. J. Chromatogr. 1981, 218, 443.
(c) Berendsen, G. E.; Pikaart, K. A.; De Galan, L.; Olieman, C. Anal. Chem. 1980, 52, 1990.
(d) Sadek, P. C.; Carr, P. W. J. Chromatogr. 1984, 288, 25.
(e) Kainz, S.; Luo, Z. Y.; Curran, D. P.; Leitner, W. Synthesis 1998, 1425.
[51] Yamazaki, O.; Hao, X. H.; Yoshida, A.; Nishikido, J. Tetrahedron Lett. 2003, 44, 8791.
[52] Hong, M.; Xiao, G. J. Fluorine Chem. 2013, 146, 11.
[53] Yuan, Y. B.; Nie, J.; Zhang, Z. B.; Wang, S. J. Appl. Catal. A:Gen. 2005, 295, 170.
[54] Yang, Q.; Ma, Z.; Ma, J.; Nie, J. Microporous Mesoporous Mater. 2013, 172, 51.
[55] Chen, M.; You, L.; Zhang, H.; Ma, Z. Catal. Lett. 2016, 146, 2165.
[56] Ma, Z.; Han, H.; Zhou, Z.; Nie, J. J. Mol. Catal. A:Chem. 2009, 311, 46.
[57] Jiang, H. Curr. Org. Chem. 2005, 9, 289.
[58] Nishikido, J.; Kamishima, M.; Matsuzawa, H.; Mikami, K. Tetrahedron 2002, 58, 8345.
[59] (a) Rogers, R. D.; Seddon, K. Science 2003, 302, 792.
(b) Lee, S. G. Chem. Commun. 2006, 1049.
(c) Earle, M. J.; Esperança, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegre, J. A. Nature 2006, 439, 831.
[60] Wang, S. J.; Jiang, S. J.; Nie, J. Adv. Synth. Catal. 2009, 351, 1939.

文章导航

/