研究论文

十二氢十二硼酸双(二烷基-5-氨基四唑)盐的合成、表征及热性能

  • 绳利丽 ,
  • 单自兴 ,
  • 郭晓燕 ,
  • 杨荣杰
展开
  • a 北京理工大学材料学院 北京 100081;
    b 武汉大学化学与分子科学学院 武汉 430072

收稿日期: 2017-12-15

  修回日期: 2018-03-20

  网络出版日期: 2018-05-03

基金资助

中国人民解放军装备发展部创新(No.71314093)资助项目.

Synthesis, Characterization and Thermal Behavior of Bis(dialkyl-5-aminotetrazolium) Dodecadodecaborates

  • Sheng Lili ,
  • Shan Zixing ,
  • Guo Xiaoyan ,
  • Yang Rongjie
Expand
  • a School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081;
    b Chemistry and Molecular Science College, Wuhan University, Wuhan 430072

Received date: 2017-12-15

  Revised date: 2018-03-20

  Online published: 2018-05-03

Supported by

Project supported by the Fund of PLA's Equipment Development Department.

摘要

尝试将十二氢十二硼阴离子(B12H122-)与含烷基的氨基四唑阳离子结合,得到了一系列新型的硼氢氨基四唑盐含能材料.首先以1-或2-位单烷基化的5-氨基四唑(5-ATZ)为原料,分别与碘甲烷、碘乙烷进行双烷基化反应,合成双烷基的5-氨基四唑的碘盐,其中烷基包括甲基、乙基、正丁基、正己基,而烷基的位置包括1,3-或1,4-位;再与自主合成的十二氢十二硼酸钾在水溶液中经复分解反应,合成了十一种新型十二氢十二硼酸双(二烷基-5-氨基四唑)盐,收率均在70%以上,且在提纯、干燥等条件下化学性质稳定.通过FT-IR、1H NMR、13C NMR、11B NMR、质谱及元素分析对十一种产物的结构进行了准确表征.采用热重分析(TG)和差示扫描量热(DSC)研究了十一种目标化合物的热性能,结果表明,这十一种目标化合物的热稳定性较高,热分解温度都在200℃以上,1,4-二甲基、1-甲基-4-乙基、1,3-二甲基、1-甲基-3-乙基、1-乙基-3-甲基的5种盐的快速热分解发生在结晶熔化之前;其他6种盐的快速热分解发生在结晶熔化之后.这一系列高能化合物在新型含能材料研究中具有重要价值.

本文引用格式

绳利丽 , 单自兴 , 郭晓燕 , 杨荣杰 . 十二氢十二硼酸双(二烷基-5-氨基四唑)盐的合成、表征及热性能[J]. 有机化学, 2018 , 38(8) : 2093 -2100 . DOI: 10.6023/cjoc201712022

Abstract

We tried combining dodecahydrodecaborane anion (B12H122-) with aminotetrazole cation into a series of new borohydrino-tetrazolium salt as a kind of energetic materials. Firstly, by using 1-or 2-5-aminotetrazole (5-ATZ) as the raw material, dialkylated 5-aminotetrazolium iodide was synthesized via dialkylation reaction with methyl iodide and ethyl iodide. And then, the dialkylated 5-aminotetrazolium iodides was used to react with potassium dodecylhydrodecaborate in an aqueous solution by metathesis. Finally, eleven novel bis(dialkyl-5-aminotetrazolium) dodecahydrododecaborates were synthesized. All of them were in yield of above 70%, and their chemical properties were stable under the conditions of purification and drying. These compounds have been characterized by FT-IR, 1H NMR, 13C NMR, 11B NMR, mass spectrometry, and elemental analysis. In inspecting their thermal properties using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) technologies, the results showed that eleven kinds of bis(dialkyl-5-aminotetrazolium) dodecahydrododecaborates have higher thermal stability and the thermal decomposition temperatures of them are mostly above 200℃. In molecular structures, their thermal stability decrease with the increase of the 4-position alkyl when the 1-position alkyl maintains the same. The rapid thermal decomposition of the five compounds, 1,4-dimethyl, 1-methyl-4-ethyl, 1,3-dimethyl, 1-methyl-3-ethyl, and 1-ethyl-3-methyl, occurred before the melting, and the rapid thermal decomposition of the other 6 compounds occurred after the crystals melting. These high-energetic compounds are of great importance in developing new high-performance propellants.

参考文献

[1] Balucani, N.; Zhang, F. T.; Kaiser, R. I. Chem. Rev. 2010, 110, 5107.
[2] Hansen, B. R. S.; Paskevicius, M.; Li, H. W.; Akiba, E.; Jensen, T. R. Coord. Chem. Rev. 2015, 323, 60.
[3] Tang, S. Q.; Ding, H. X. J. Propul. Technol. 1983, 4, 35(in Chinese). (唐松青, 丁宏勋, 推进技术, 1983, 4, 35.)
[4] Wang, W. Q.; Xue, Y. N.; Yang, J. M.; Li,Y. N.; Yu, Q. W.; Mei, S. N. Chin. J. Energy Mater. 2012, 20, 132.
[5] Shan, Z. X.; Sheng, L. L.; Yang, R. J. Chin. J. Explos. Propell. 2017, 40, 1(in Chinese). (单自兴, 绳利丽, 杨荣杰, 火炸药学报, 2017, 40, 1.)
[6] Gao, X.; Shreeve, J. M. Chem. Rev. 2011, 111, 7377.
[7] Li, Y. L.; Xue, M.; Wang, J. L.; Cao, D. L.; Ma, Z. L. Chin. J. Org. Chem. 2016, 36, 1528(in Chinese). (李云路, 薛梅, 王建龙, 曹端林, 马忠亮, 有机化学, 2016, 36, 1528.)
[8] Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Angew. Chem., Int. Ed. 2006, 45, 3584.
[9] Hiskey, M.; Chavez, D.; Son, S. F. Proc. 27th International Pyrotechnics Seminar, Colorado, USA, 2000, pp. 3~14.
[10] Klapötke, T. M. Struct. Bonding 2007, 125, 85.
[11] Miller, C. G.; Williams, G. K. US 0199937, 2009.
[12] Miller, C. G.; Williams, G. K. US 0099111, 2008.
[13] Zhang, S. H.; Han, L.; Wang, X. D. Chin. J. Luoyang Normal Univ. 2005, 5, 74(in Chinese). (张苏杭, 韩琳, 王新德, 洛阳师范学院报, 2005, 5, 74.)
[14] Veronika, E.; Klapötke, T. M.; Jörg, S. Z. Anorg. Allg. Chem. 2010, 633, 879.
[15] Herbst, R. M.; Garrison, J. A. J. Org. Chem. 1953, 18, 941.
[16] Denffer, M. V.; Klapötke, T. M.; Heeb, G. Propellants, Explos., Pyrotech. 2005, 30, 191.
[17] Rittenhouse, C. T.; Ariz, G. US 3663553, 1972.
[18] Sinditskii, V. P.; Fogelzang, A. E.; Levshenkov, A. I. Proceedings of the 21st International Pyrotechnics Seminar, Beijing, 1995, pp. 762~773.
[19] Denffer, M. V.; Klapötke, T. M.; Sabat, C. M. Z. Anorg. Allg. Chem. 2008, 634, 2575.
[20] Brill, T. B.; Ramanathan, H. Combust. Flame 2000, 122, 165.
[21] Jin, C.; Ye, C.; Piekarski, C.; Twamley, B.; Shreeve, J. M. Eur. J. Inorg. Chem. 2005, 18, 3760.
[22] Zhang, Q.; Shreeve, J. M. Chem. Rev. 2014, 114, 10527.
[23] Mccrary, P. D.; Barber, P. S.; Kelley, S. P.; Rogers, R. D. Inorg. Chem. 2014, 53, 4770.
[24] Zhang, W.; Qi, X.; Huang, S.; Li, J.; Tang, C.; Li, J. J. Mater. Chem. A 2016, 4, 8978.
[25] Xue, Y. N.; Wang, W. Q.; Li, J. Y.; Lu, J. Y.; Lü, J. Chin. Energy Mater. 2016, 24, 274(in Chinese). (薛云娜, 王为强, 李娇毅, 路居有, 吕剑, 含能材料, 2016, 24, 274.)
[26] Rao, M. H.; Muralidharan, K. Polyhedron 2016, 115, 105.
[27] Janiak, C.; Esser, L. Chem. Sci. 1993, 48, 394.
[28] Belletire, J. L.; Schneider, S.; Wight, B. A.; Strauss, S. L.; Shackelford, S. A. Synth. Commun. 2012, 42, 155.
[29] Thomas, M. K.; Karaghiosoff, K.; Mayer, P.; Penger, A.; Jan, M. W. Propellants, Explos., Pyrotech. 2006, 31, 188.
[30] Thomas, M, K.; Carles, M. S.; Magdalena, R. Z. Anorg. Allg. Chem. 2008, 634, 688.
[31] Herbst, R. M.; Percival, D. F. J. Org. Chem. 1954, 17, 439.
[32] Murphy, D. B.; Picard, J. P. J. Org. Chem. 1954, 17, 1807.
[33] Henry, R. A.; Finnegan, W. G. J. Am. Chem. Soc. 1954, 76, 923.

文章导航

/