碱土金属促进氢官能团化反应的研究进展
收稿日期: 2018-04-16
修回日期: 2018-05-11
网络出版日期: 2018-05-17
基金资助
重庆市科委基金(基础研究与前沿探索)(No.cstc2017jcyjAX0371)、重庆第二师范学院科技协同创新平台建设(No.2017XJPT01)、重庆第二师范学院校级重点项目(No.KY201704A)及重庆第二师范学院博士启动基金(No.2017BSRC001)资助项目.
Recent Advances in Alkaline-Earth-Metal-Catalyzed Hydrofunctionalization Reactions
Received date: 2018-04-16
Revised date: 2018-05-11
Online published: 2018-05-17
Supported by
Project supported by the Basic and Frontier Research Project of Chongqing Science and Technology Commission (No. cstc2017jcyjAX0371), the Project of Science and Technology Collaborative Innovation Platform Construction of Chongqing University of Education (No. 2017XJPT01), the University-level Key Projects of Chongqing University of Education (No. KY201704A), and the Scientific Research Foundation of Chongqing University of Education (No. 2017BSRC001).
李园园 , 程玉华 , 单春晖 , 张敬 , 徐冬冬 , 白若鹏 , 屈凌波 , 蓝宇 . 碱土金属促进氢官能团化反应的研究进展[J]. 有机化学, 2018 , 38(8) : 1885 -1896 . DOI: 10.6023/cjoc201804031
Alkaline-earth-metal compounds have been widely concerned due to its abundant reserve and the low-cost. In recent years, alkaline-earth-metal catalysis has achieved great progress in dehydrocoupling, hydroboration, hydrophosphination, hydroamination, hydrosilylation reactions experimentally and therotically. These types of reaction and catalytic mechanism, leading to indentify the role of alkaline-earth-metal in hydrogenation and dehydrogenation reaction are summarized. These reactions, in which the metal-hydride act as active species, generally undergo the reaction pathway involving the cleavage and formation of the metal-hydride covalent bond. The reaction features and mechanisms are generally recognized accrossing to the classification and discussion of these reactions, which would provide guidance for further development of alkaline-earth-metal catalysis.
[1] Stephan, D. W. J. Am. Chem. Soc. 2015, 137, 10018.
[2] Qi, X. T.; Liu, S.; Zhang, T.; Long, R.; Huang, J.; Gong, J. X.; Yang, Z.; Lan, Y. J. Org. Chem. 2016, 81, 8306.
[3] Qi, X. T.; Li, Y. Z.; Bai, R. P.; Lan, Y. Acc. Chem. Res. 2017, 50, 2799.
[4] Cui, C. X.; Zhang, Z. P.; Zhu, L.; Qu, L. B.; Zhang, Y. P.; Lan, Y. Phys. Chem. Chem. Phys. 2017, 19, 30393.
[5] Li, Y. Z.; Zou, L. F.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 615.
[6] Zhu, L.; Ye, J. H.; Duan, M.; Qi, X. T.; Yu, D. G.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 633.
[7] Yue, X. Y.; Shan, C. H.; Qi, X. T.; Luo, X. L.; Zhu, L.; Zhang, T.; Li, Y. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Dalton Trans. 2018, 47, 1819.
[8] Luo, Y. X.; Liu, S.; Xu, D. D.; Qu, L. B.; Luo, X. L.; Bai, R. P.; Lan, Y. J. Organomet. Chem. 2018, 1.
[9] Qi, X. T.; Liu, X. F.; Qu, L. B.; Liu, Q.; Lan, Y. J. Catal. 2018, 362, 25.
[10] Cui, C. X.; Shan, C. H.; Zhang, Y. P.; Chen, X. T.; Qu, L. B.; Lan, Y. Chem.-Asian J. 2018, 3, 30.
[11] Liu, S.; Qi, X. T.; Qu, L. B.; Bai, R. P.; Lan, Y. Catal. Sci. Technol. 2018, 8, 1645.
[12] Yaroshevsky, A. Geochem. Int. 2006, 44, 48.
[13] Green, S. P.; Jones, C.; Stasch, A. Science 2007, 318, 1754.
[14] Rossin, A.; Peruzzini, M. Chem. Rev. 2016, 116, 8848.
[15] Krieck, S.; Görls, H.; Yu, L.; Reiher, M.; Westerhausen, M. J. Am. Chem. Soc. 2009, 131, 2977.
[16] Westerhausen, M. Angew. Chem., Int. Ed. 2008, 47, 2185.
[17] Hill, M. S.; Liptrot, D. J.; Weetman, C. Chem. Soc. Rev. 2016, 45, 972.
[18] Rochat, R.; Lopez, M. J.; Tsurugi, H.; Mashima, K. ChemCatChem 2016, 8, 10.
[19] Ma, M. T.; Wang, W. F.; Yao, W. W. Chin. J. Org. Chem. 2016, 36, 72(in Chinese). (马猛涛, 王未凡, 姚薇薇, 有机化学, 2016, 36, 72.)
[20] Li, Y. W.; Marks, T. J. Organometallics 1996, 15, 3770.
[21] Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108.
[22] Hong, S. W.; Tian, S. M.; Metz, V.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768.
[23] Wobser, S. D.; Stephenson, C. J.; Delferro, M.; Marks, T. J. Organometallics 2013, 32, 1317.
[24] Seo, S.; Yu, X. H.; Marks, T. J. Tetrahedron Lett. 2013, 54, 1828.
[25] Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8111.
[26] Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8091.
[27] Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 4253.
[28] Yu, X. H.; Seo, S.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 7244.
[29] Dzudza, A.; Marks, T. J. Org. Lett. 2009, 11, 1523.
[30] Roesky, P. W.; Denninger, U.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 4486.
[31] Motta, A.; Fragala, I. L. Marks, T. J. Organometallics 2005, 24, 4995.
[32] Kawaoka, A. M.; Douglass, M. R.; Marks, T. J. Organometallics 2003, 22, 4630.
[33] Seo, S. Y.; Yu X. H.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 263.
[34] Hong, S.; Kawaoka, A. M., Marks, T. J. J. Am. Chem. Soc. 2003, 125, 15878.
[35] Douglass, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 2001, 123, 10221.
[36] Weiss, C. J.; Wobser, S. D.; Marks, T. J. Organometallics 2010, 29, 6308.
[37] Liptrot, D. J.; Hill, M. S.; Mahon, M. F.; Wilson, A. S. S. Angew. Chem., Int. Ed. 2015, 54, 13362.
[38] Xu, D. D.; Shan, C. H.; Li, Y. Z.; Qi, X. T.; Luo, X. L.; Bai, R. P.; Lan, Y. Inorg. Chem. Front. 2017, 4, 1813.
[39] Lampland, N. L.; Hovey, M.; Mukherjee, D.; Sadow, A. D. ACS Catal. 2015, 5, 4219.
[40] Arrowsmith, M.; Hill, M. S.; Kociok-Kohn, G. Chem.-Eur. J. 2013, 19, 2776.
[41] Arrowsmith, M.; Hadlington, T. J.; Hill, M. S.; Kociok-Kohn, G. Chem. Commun. 2012, 48, 4567.
[42] Weetman, C.; Anker, M. D.; Arrowsmith, M.; Hill, M. S.; Ko-ciok-Köhn, G.; Liptrot, D. J.; Mahon, M. F. Chem. Sci. 2016, 7, 628.
[43] Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Köhn, G.; Weetman, C. Organometallics 2011, 30, 5556.
[44] Mukherjee, D.; Ellern, A.; Sadow, A. D. Chem. Sci. 2014, 5, 959.
[45] Brown, H. C.; Schlesinger, H. I.; Burg, A. B. J. Am. Chem. Soc. 1939, 61, 673.
[46] De Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007.
[47] Oro, L. A.; Carmona, D.; Fraile, J. M. In Metal-Catalysis in Industrial Organic Processes, Eds.:Chiusoli, G. P.; Maitlis, P. M., RSC Publishing, London, 2006, 79.
[48] Weetman, C.; Anker, M. D.; Arrowsmith, M.; Hill, M. S.; Kociok-Köhn, G.; Liptrot, D. J.; Mahon, M. F. Chem. Sci. 2016, 7, 628.
[49] Chakrabarty, S.; Choudhary, S.; Doshi, A.; Liu, F.-Q.; Mohan, R.; Ravindra, M. P.; Shah, D.; Yang, X.; Fleming, F. F. Adv. Synth. Catal. 2014, 356, 2135.
[50] Weetman, C.; Hill, M. S.; Mahon, M. F. Chem. Commun. 2015, 51, 14477.
[51] Weetman, C.; Hill, M. S.; Mahon, M. F. Chem.-Eur. J. 2016, 22, 7158.
[52] Xu, D.-D.; Shan, C. H.; Bai, R. P.; Lan, Y. Chin. J. Org. Chem. 2017, 37, 190(in Chinese). (徐冬冬, 单春晖, 白若鹏, 蓝宇, 有机化学, 2017, 37, 190.)
[53] Berg, J. M.; Tymoczko, J. L.; Stryer, L. In Biochemistry, 5th ed., Ed.:Freeman, W. H., Philadelphia, PA, 2002.
[54] Schramm, M.; Thomas, G.; Towart, R.; Franckowiak, G. Nature 1983, 303, 535.
[55] Intemann, J.; Lutz, M.; Harder, S. Organometallics 2014, 33, 5722.
[56] Togni, G.; Grützmacher, H. Catalytic Heterofunctionalization, VCH, Weinheim, 2001.
[57] Delacroix, O.; Gaumout, A. C. Curr. Org. Chem. 2005, 9, 1851.
[58] Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A. Organometallics 2007, 26, 2953.
[59] Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A. Organometallics 2008, 27, 497.
[60] Nobis, M.; Driessen-Hölscher, B. Angew. Chem., Int. Ed. 2001, 40, 3983.
[61] Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127, 2042.
[62] Liu, B.; Roisnel, T.; Åois Carpentier, J.-F.; Sarazin, Y. Angew. Chem., Int. Ed. 2012, 51, 4943.
[63] Ojima, I.; Li, Z.; Zhu, J. In The Chemistry of Organosilicon Compounds, Vol. 2, Eds.:Rappoport, Z.; Apeloig, Y., Wiley, New York, 1998, p. 1687.
[64] Buch, F.; Brettar, J.; Harder, S. Angew. Chem., Int. Ed. 2006, 45, 2741.
[65] Bauer, H.; Alonso, M.; Färber, C.; Elsen, H.; Pahl, J.; Causero, A.; Ballmann, G.; De Proft, F.; Harder, S. Nat. Catal. 2018, 1, 40.
/
〈 |
|
〉 |