综述与进展

碱土金属促进氢官能团化反应的研究进展

  • 李园园 ,
  • 程玉华 ,
  • 单春晖 ,
  • 张敬 ,
  • 徐冬冬 ,
  • 白若鹏 ,
  • 屈凌波 ,
  • 蓝宇
展开
  • a 重庆第二师范学院生物与化学工程学院 重庆 400067;
    b 重庆第二师范学院脂质资源与儿童日化品协同创新中心 重庆 400067;
    c 重庆大学化学化工学院 重庆 401331;
    d 郑州大学化学与分子工程学院 郑州 450006;
    e 济宁学院化学与化工系 济宁 272001

收稿日期: 2018-04-16

  修回日期: 2018-05-11

  网络出版日期: 2018-05-17

基金资助

重庆市科委基金(基础研究与前沿探索)(No.cstc2017jcyjAX0371)、重庆第二师范学院科技协同创新平台建设(No.2017XJPT01)、重庆第二师范学院校级重点项目(No.KY201704A)及重庆第二师范学院博士启动基金(No.2017BSRC001)资助项目.

Recent Advances in Alkaline-Earth-Metal-Catalyzed Hydrofunctionalization Reactions

  • Li Yuanyuan ,
  • Cheng Yuhua ,
  • Shan Chunhui ,
  • Zhang Jing ,
  • Xu Dongdong ,
  • Bai Ruopeng ,
  • Qu Lingbo ,
  • Lan Yu
Expand
  • a College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067;
    b Cooperative Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067;
    c School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331;
    d College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450006;
    e Department of Chemistry and Chemical Engineering, Jining University, Jining 272001

Received date: 2018-04-16

  Revised date: 2018-05-11

  Online published: 2018-05-17

Supported by

Project supported by the Basic and Frontier Research Project of Chongqing Science and Technology Commission (No. cstc2017jcyjAX0371), the Project of Science and Technology Collaborative Innovation Platform Construction of Chongqing University of Education (No. 2017XJPT01), the University-level Key Projects of Chongqing University of Education (No. KY201704A), and the Scientific Research Foundation of Chongqing University of Education (No. 2017BSRC001).

摘要

碱土金属及其化合物由于其储量丰富、成本低而被应用于催化反应中.近年来,碱土金属催化脱氢偶联反应、硼氢化反应、氢膦化反应、氢胺化反应以及氢化硅烷化反应等被关注和研究,无论在实验还是原理上都取得了大量的进展.针对这类反应及其机理进行总结归纳,从而完整描绘了碱土金属在氢化或脱氢反应中起到的作用.这类反应中,往往都涉及到碱土金属氢化物作为活性物种,反应过程中都要经历碱土金属氢共价键的形成和断裂.通过对这些反应的分类和讨论,从整体上认识了这类反应的反应条件和反应历程,为今后设计碱土金属催化剂和同类型反应的催化循环提供了指导.

本文引用格式

李园园 , 程玉华 , 单春晖 , 张敬 , 徐冬冬 , 白若鹏 , 屈凌波 , 蓝宇 . 碱土金属促进氢官能团化反应的研究进展[J]. 有机化学, 2018 , 38(8) : 1885 -1896 . DOI: 10.6023/cjoc201804031

Abstract

Alkaline-earth-metal compounds have been widely concerned due to its abundant reserve and the low-cost. In recent years, alkaline-earth-metal catalysis has achieved great progress in dehydrocoupling, hydroboration, hydrophosphination, hydroamination, hydrosilylation reactions experimentally and therotically. These types of reaction and catalytic mechanism, leading to indentify the role of alkaline-earth-metal in hydrogenation and dehydrogenation reaction are summarized. These reactions, in which the metal-hydride act as active species, generally undergo the reaction pathway involving the cleavage and formation of the metal-hydride covalent bond. The reaction features and mechanisms are generally recognized accrossing to the classification and discussion of these reactions, which would provide guidance for further development of alkaline-earth-metal catalysis.

参考文献

[1] Stephan, D. W. J. Am. Chem. Soc. 2015, 137, 10018.
[2] Qi, X. T.; Liu, S.; Zhang, T.; Long, R.; Huang, J.; Gong, J. X.; Yang, Z.; Lan, Y. J. Org. Chem. 2016, 81, 8306.
[3] Qi, X. T.; Li, Y. Z.; Bai, R. P.; Lan, Y. Acc. Chem. Res. 2017, 50, 2799.
[4] Cui, C. X.; Zhang, Z. P.; Zhu, L.; Qu, L. B.; Zhang, Y. P.; Lan, Y. Phys. Chem. Chem. Phys. 2017, 19, 30393.
[5] Li, Y. Z.; Zou, L. F.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 615.
[6] Zhu, L.; Ye, J. H.; Duan, M.; Qi, X. T.; Yu, D. G.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 633.
[7] Yue, X. Y.; Shan, C. H.; Qi, X. T.; Luo, X. L.; Zhu, L.; Zhang, T.; Li, Y. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Dalton Trans. 2018, 47, 1819.
[8] Luo, Y. X.; Liu, S.; Xu, D. D.; Qu, L. B.; Luo, X. L.; Bai, R. P.; Lan, Y. J. Organomet. Chem. 2018, 1.
[9] Qi, X. T.; Liu, X. F.; Qu, L. B.; Liu, Q.; Lan, Y. J. Catal. 2018, 362, 25.
[10] Cui, C. X.; Shan, C. H.; Zhang, Y. P.; Chen, X. T.; Qu, L. B.; Lan, Y. Chem.-Asian J. 2018, 3, 30.
[11] Liu, S.; Qi, X. T.; Qu, L. B.; Bai, R. P.; Lan, Y. Catal. Sci. Technol. 2018, 8, 1645.
[12] Yaroshevsky, A. Geochem. Int. 2006, 44, 48.
[13] Green, S. P.; Jones, C.; Stasch, A. Science 2007, 318, 1754.
[14] Rossin, A.; Peruzzini, M. Chem. Rev. 2016, 116, 8848.
[15] Krieck, S.; Görls, H.; Yu, L.; Reiher, M.; Westerhausen, M. J. Am. Chem. Soc. 2009, 131, 2977.
[16] Westerhausen, M. Angew. Chem., Int. Ed. 2008, 47, 2185.
[17] Hill, M. S.; Liptrot, D. J.; Weetman, C. Chem. Soc. Rev. 2016, 45, 972.
[18] Rochat, R.; Lopez, M. J.; Tsurugi, H.; Mashima, K. ChemCatChem 2016, 8, 10.
[19] Ma, M. T.; Wang, W. F.; Yao, W. W. Chin. J. Org. Chem. 2016, 36, 72(in Chinese). (马猛涛, 王未凡, 姚薇薇, 有机化学, 2016, 36, 72.)
[20] Li, Y. W.; Marks, T. J. Organometallics 1996, 15, 3770.
[21] Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108.
[22] Hong, S. W.; Tian, S. M.; Metz, V.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768.
[23] Wobser, S. D.; Stephenson, C. J.; Delferro, M.; Marks, T. J. Organometallics 2013, 32, 1317.
[24] Seo, S.; Yu, X. H.; Marks, T. J. Tetrahedron Lett. 2013, 54, 1828.
[25] Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8111.
[26] Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8091.
[27] Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 4253.
[28] Yu, X. H.; Seo, S.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 7244.
[29] Dzudza, A.; Marks, T. J. Org. Lett. 2009, 11, 1523.
[30] Roesky, P. W.; Denninger, U.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 4486.
[31] Motta, A.; Fragala, I. L. Marks, T. J. Organometallics 2005, 24, 4995.
[32] Kawaoka, A. M.; Douglass, M. R.; Marks, T. J. Organometallics 2003, 22, 4630.
[33] Seo, S. Y.; Yu X. H.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 263.
[34] Hong, S.; Kawaoka, A. M., Marks, T. J. J. Am. Chem. Soc. 2003, 125, 15878.
[35] Douglass, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 2001, 123, 10221.
[36] Weiss, C. J.; Wobser, S. D.; Marks, T. J. Organometallics 2010, 29, 6308.
[37] Liptrot, D. J.; Hill, M. S.; Mahon, M. F.; Wilson, A. S. S. Angew. Chem., Int. Ed. 2015, 54, 13362.
[38] Xu, D. D.; Shan, C. H.; Li, Y. Z.; Qi, X. T.; Luo, X. L.; Bai, R. P.; Lan, Y. Inorg. Chem. Front. 2017, 4, 1813.
[39] Lampland, N. L.; Hovey, M.; Mukherjee, D.; Sadow, A. D. ACS Catal. 2015, 5, 4219.
[40] Arrowsmith, M.; Hill, M. S.; Kociok-Kohn, G. Chem.-Eur. J. 2013, 19, 2776.
[41] Arrowsmith, M.; Hadlington, T. J.; Hill, M. S.; Kociok-Kohn, G. Chem. Commun. 2012, 48, 4567.
[42] Weetman, C.; Anker, M. D.; Arrowsmith, M.; Hill, M. S.; Ko-ciok-Köhn, G.; Liptrot, D. J.; Mahon, M. F. Chem. Sci. 2016, 7, 628.
[43] Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Köhn, G.; Weetman, C. Organometallics 2011, 30, 5556.
[44] Mukherjee, D.; Ellern, A.; Sadow, A. D. Chem. Sci. 2014, 5, 959.
[45] Brown, H. C.; Schlesinger, H. I.; Burg, A. B. J. Am. Chem. Soc. 1939, 61, 673.
[46] De Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007.
[47] Oro, L. A.; Carmona, D.; Fraile, J. M. In Metal-Catalysis in Industrial Organic Processes, Eds.:Chiusoli, G. P.; Maitlis, P. M., RSC Publishing, London, 2006, 79.
[48] Weetman, C.; Anker, M. D.; Arrowsmith, M.; Hill, M. S.; Kociok-Köhn, G.; Liptrot, D. J.; Mahon, M. F. Chem. Sci. 2016, 7, 628.
[49] Chakrabarty, S.; Choudhary, S.; Doshi, A.; Liu, F.-Q.; Mohan, R.; Ravindra, M. P.; Shah, D.; Yang, X.; Fleming, F. F. Adv. Synth. Catal. 2014, 356, 2135.
[50] Weetman, C.; Hill, M. S.; Mahon, M. F. Chem. Commun. 2015, 51, 14477.
[51] Weetman, C.; Hill, M. S.; Mahon, M. F. Chem.-Eur. J. 2016, 22, 7158.
[52] Xu, D.-D.; Shan, C. H.; Bai, R. P.; Lan, Y. Chin. J. Org. Chem. 2017, 37, 190(in Chinese). (徐冬冬, 单春晖, 白若鹏, 蓝宇, 有机化学, 2017, 37, 190.)
[53] Berg, J. M.; Tymoczko, J. L.; Stryer, L. In Biochemistry, 5th ed., Ed.:Freeman, W. H., Philadelphia, PA, 2002.
[54] Schramm, M.; Thomas, G.; Towart, R.; Franckowiak, G. Nature 1983, 303, 535.
[55] Intemann, J.; Lutz, M.; Harder, S. Organometallics 2014, 33, 5722.
[56] Togni, G.; Grützmacher, H. Catalytic Heterofunctionalization, VCH, Weinheim, 2001.
[57] Delacroix, O.; Gaumout, A. C. Curr. Org. Chem. 2005, 9, 1851.
[58] Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A. Organometallics 2007, 26, 2953.
[59] Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A. Organometallics 2008, 27, 497.
[60] Nobis, M.; Driessen-Hölscher, B. Angew. Chem., Int. Ed. 2001, 40, 3983.
[61] Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127, 2042.
[62] Liu, B.; Roisnel, T.; Åois Carpentier, J.-F.; Sarazin, Y. Angew. Chem., Int. Ed. 2012, 51, 4943.
[63] Ojima, I.; Li, Z.; Zhu, J. In The Chemistry of Organosilicon Compounds, Vol. 2, Eds.:Rappoport, Z.; Apeloig, Y., Wiley, New York, 1998, p. 1687.
[64] Buch, F.; Brettar, J.; Harder, S. Angew. Chem., Int. Ed. 2006, 45, 2741.
[65] Bauer, H.; Alonso, M.; Färber, C.; Elsen, H.; Pahl, J.; Causero, A.; Ballmann, G.; De Proft, F.; Harder, S. Nat. Catal. 2018, 1, 40.

文章导航

/