综述与进展

药效基团和C—H活化导向基团功能转换在药物研发中的应用

  • 任青云 ,
  • 聂飚 ,
  • 张英俊 ,
  • 张霁
展开
  • a 广东东阳光集团药业研究院 东莞 523871;
    b 抗感染新药研发国家重点实验室 东莞 523871

收稿日期: 2018-03-02

  修回日期: 2018-05-04

  网络出版日期: 2018-06-06

基金资助

广东省引进创新科研团队计划(No.201301Y0105381261)、抗感染新药研发国家重点实验室(No.2015DQ780357)及国家重大新药创制(No.2018ZX09201002)资助项目.

Functional Switch between Pharmacophore and Directing Group and Their Application in Drug Discovery and Development via C-H Activation and Functionalization

  • Ren Qingyun ,
  • Nie Biao ,
  • Zhang Yingjun ,
  • Zhang Ji
Expand
  • a HEC Pharm Group, HEC R & D Center, Dongguan 523871;
    b The State Key Laboratory of Anti-Infective Drug Development, Dongguan 523871

Received date: 2018-03-02

  Revised date: 2018-05-04

  Online published: 2018-06-06

Supported by

Project supported by the Introduction of Innovative R&D Team Program of Guangdong Province (No. 201301Y0105381261), the State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357) and the National Major Scientific and Technological Special Project for "Significant New Drugs Development" (No. 2018ZX09201002).

摘要

通过实例介绍分析药效基团和C—H活化导向基团的功能作用以及功能转换在药物研发中的应用,归纳总结出许多药效基团,如含氮芳香化合物、氰基、羧基、磺酰胺基等,是理想的C—H活化导向基团,在药物合成的后续阶段引入C—H活化官能团将大大简化并有效提高发现新药的可能性.评述了这个新思维及C—H活化合成方法的最新突破以及其在新药研究中的应用,最后列举了药效基团作为C—H活化导向基团进行药物合成的工业化实例,相信这一新发展将推动药物发明与创新,使药物合成与工艺更趋环境友好.

本文引用格式

任青云 , 聂飚 , 张英俊 , 张霁 . 药效基团和C—H活化导向基团功能转换在药物研发中的应用[J]. 有机化学, 2018 , 38(10) : 2465 -2490 . DOI: 10.6023/cjoc201803002

Abstract

The functional switch of a C—H activation directing group to a pharmacophore is introduced and analyzed, and the value of the pharmacophore and the application of C—H activation are exemplified. It is concluded that many pharmacophores, such as N-containing heteroaromatic, nitrile, carboxylic acid, amide and sulfonamide groups, are ideal directing groups for C—H activation enabling the subsequent stages of drug synthesis, and showing that there is a correlation between a directing group and a pharmacophore. The late-stage functionalization will greatly simplify and effectively improve the possibility of discovering new drugs and potentially shortening the overall synthesis. The latest breakthroughs of C—H activation and application in the drug discovery process are reviewed as case studies, providing several industrial examples of using a pharmacophore as directing group for drug synthesis. It is believed that this development will promote a more rapid and green drug synthesis.

参考文献

[1] (a) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
(b) Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.; Labaudiniere, R. F. J. Med. Chem. 1999, 42, 3251.
(c) Leach, A. R.; Gillet, V. J.; Lewis, R. A.; Taylor, R. J. Med. Chem. 2010, 53, 539.
[2] (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(b) Zhu, R. Y.; Farmer, M. E.; Chen, Y. Q.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2.
[3] (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(b) Murakami, K.; Yamada, S.; Kaneda, T.; Itami, K. Chem. Rev. 2017, 117, 9302.
[4] (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
(b) Pulis, A. P.; Procter, D. L. Angew. Chem., Int. Ed. 2016, 55, 9842.
[5] (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
(b) Ping, Y. Y.; Wang, L. P.; Ding, Q. P.; Peng, Y. Y. Adv. Synth. Catal. 2017, 359, 3274.
[6] (a) Wencel-Delord, J.; Droege, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
(b) Chen, Z. K.; Wang, B. J.; Zhang, J. T.; Yu, W. L.; Liu, Z. X.; Zhang, Y. H. Org. Chem. Front. 2015, 2, 1107.
[7] (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
(b) Aziz, J.; Piguel, S. Synlett. 2017, 49, 4562.
[8] (a) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
(b) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529.
(c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698.
[9] (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2012, 45, 5068.
(b) Shang, M.; Sun, S. Z.; Wang, H. L.; Wang, M. M.; Dai, H. X. Synthesis 2016, 48, 4381.
[10] (a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
(b) Biafora, A.; Gooβen, L. J. Synlett 2017, 28, 1885.
[11] (a) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
(b) Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. Chem. Commun. 2017, 53, 5584.
[12] (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2012, 102, 1731.
(b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2012, 102, 1731.
(c) Wang, S.; Yan, F.; Wang, L. S.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291(in Chinese). (汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.)
[13] Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2016, 45, 546.
[14] Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385.
[15] Wu, X. F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40. 4986.
[16] (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40. 5068.
(b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
[17] Zhang, W.; Zhang, J. H.; Liu, Y. K. Chin. J. Org. Chem. 2014, 34, 36(in Chinese). (张巍, 张家慧, 刘运奎, 有机化学, 2014, 34, 36.)
[18] Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412.
[19] Zhang, J.; Nie, B.; Zhang, Y. J. Chin. J. Org. Chem. 2015, 35, 337(in Chinese). (张霁, 聂飚, 张英俊, 有机化学, 2015, 35, 337.)
[20] Pennington, L. D.; Moustakas, D. T. J. Med. Chem. 2017, 60, 3552.
[21] Verheij, M. H. P.; Thompson, A. J.; van Muijlwijk-Koezen, J. E.; Lummis, S. C. R.; Leurs, R.; de Esch, I. J. P. J. Med. Chem. 2012, 55, 8603.
[22] Borrmann, T.; Abdelrahman, A.; Volpini, R.; Lambertucci, C.; Alksnis, E.; Gorzalka, S.; Knospe, M.; Schiedel, A. C.; Cristalli, G.; Müller, C. E. J. Med. Chem. 2009, 52, 5974.
[23] Yuan, Y.; Zaidi, S. A.; Elbegdorj, O.; Aschenbach, L. C. K.; Li, G.; Stevens, D. L.; Scoggins, K. L.; Dewey, W. L.; Selley, D. E.; Zhang, Y. J. Med. Chem. 2013, 56, 9156.
[24] Verhoest, P. R.; Chapin, D. S.; Corman, M.; Fonseca, K.; Harms, J. F.; Hou, X.; Marr, E. S.; Menniti, F. S.; Nelson, F.; O'Connor, R.; Pandit, J.; Proulx-LaFrance, C.; Schmidt, A. W.; Schmidt, C. J.; Suiciak, J. A.; Liras, S. J. Med. Chem. 2009, 52, 5188.
[25] Vanotti, E.; Amici, R.; Bargiotti, A.; Berthelsen, J.; Bosotti, R.; Ciavolella, A.; Cirla, A.; Cristiani, C.; D'Alessio, R.; Forte, B.; Isacchi, A.; Martina, K.; Menichincheri, M.; Molinari, A.; Montagnoli, A.; Orsini, P.; Pillan, A.; Roletto, F.; Scolaro, A.; Tibolla, M.; Valsasina, B.; Varasi, M.; Volpi, D.; Santocanale, C. J. Med. Chem. 2008, 51, 487.
[26] Duraiswamy, A. J.; Lee, M. A.; Madan, B.; Ang, S. H.; Tan, E. S. W.; Cheong, W. W. V.; Ke, Z.; Pendharkar, V.; Ding, L. J.; Chew, Y. S.; Manoharan, V.; Sangthongpitag, K.; Alam, J.; Poulsen, A.; Ho, S. Y.; Virshup, D. M.; Keller, T. H. J. Med. Chem. 2015, 58, 5889.
[27] Blum, C. A.; Caldwell, T.; Zheng, X.; Bakthavatchalam, R.; Capitosti, S.; Brielmann, H.; De Lombaert, S.; Kershaw, M. T.; Matson, D.; Krause, J. E.; Cortright, D.; Crandall, M.; Martin, W. J.; Murphy, B. A.; Boyce, S.; Jones, A. B.; Mason, G.; Rycroft, W.; Perrett, H.; Conley, R.; Burnaby-Davies, N.; Chenard, B. L.; Hodgetts, K. J. J. Med. Chem. 2010, 53, 3330.
[28] Kalyani, D.; Deprez, N. R.; Desai, L.; Sanford, V. M. S. J. Am. Chem. Soc. 2005, 127, 7330.
[29] Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657.
[30] Yu, W.-Y.; Sit, W. N.; Zhou, Z.; Chan, A. S.-C. Org. Lett. 2009, 11, 3174.
[31] Li, W.; Yin, Z.; Jiang, X.; Sun, P. J. Org. Chem. 2011, 76, 8543.
[32] Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048.
[33] Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149.
[34] Feng, C.-G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322.
[35] Li, C.; Yano, T.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 9801.
[36] (a) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020.
(b) Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266.
[37] Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
[38] Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. J. Am. Chem. Soc. 2010, 132, 1822.
[39] Gong, X.; Song, G.; Zhang, H.; Li, X. Org. Lett. 2011, 13, 1766.
[40] Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872.
[41] Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.
[42] Patrick, F.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 10139.
[43] Hilton, M. C.; Dolewski, R. D.; McNally, A. J. Am. Chem. Soc. 2016, 138, 13806
[44] Cao, H.; Chen, L.; Liu, J.; Cai, H.; Deng, H.; Chen, G.; Yan, C.; Chen, Y. RSC Adv. 2015, 5, 22356.
[45] Cao, H.; Lei, S.; Liao, J.; Huang, J.; Qiu, H.; Chen, Q.; Qiu, S.; Chen, Y. RSC Adv. 2014, 4, 50137.
[46] Koubachi, J.; El Kazzouli, S.; Berteina-Raboin, S.; Mouaddib, A.; Guillaumet, G. Synthesis 2008, 2537.
[47] Cao, H.; Lei, S.; Li, N.; Chen, L.; Cai, H.; Tan, J. Chem. Commun. 2015, 51, 1823.
[48] Samanta, S.; Mondal, S.; Santra, S.; Kibriya, G.; Hajra, A. J. Org. Chem. 2016, 81, 10088.
[49] Yadav, M.; Dara, S.; Saikam, V.; Kumar, M.; Aithagani, S. K.; Paul, S.; Vishwakarma, R. A.; Singh, P. P. Eur. J. Org. Chem. 2015, 29, 6526.
[50] (a) Monir, K.; Bagdi, A. K.; Ghosh, M.; Hajra, A. J. Org. Chem. 2015, 80, 1332.
(b) Ji, X.-M.; Wei, L.; Chen, F.; Tang, R.-Y. RSC Adv. 2015, 5, 29766.
[51] Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.
[52] Fleming, F. F.; Yao, L.-H.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
[53] Wang, J.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1643(in Chinese). (王江, 柳红, 有机化学, 2012, 32, 1643.)
[54] Hingorani, M.; Lightman, S. Drugs 1995, 50, 208.
[55] Norman, P. Curr. Opin. Anti-Inflammatory Immunomodulatory Invest. Drugs 2000, 2, 113.
[56] Reginster, J.-Y.; Brandi, M.-L.; Cannata-Andia, J.; Cooper, C.; Cortet, B.; Feron, J.-M.; Genant, H.; Palacios, S.; Ringe, J. D.; Rizzoli, R. Osteoporosis Int. 2015, 26, 1667.
[57] Rodriguez-Tudela, J. L.; Alcazar-Fuoli, L.; Mellado, E.; Alastruey-Izquierdo, A.; Monzon, A.; Cuenca-Estrella, M. Antimicrob. Agents Chemother. 2008, 52, 2468.
[58] Illnait-Zaragozi, M. T.; Martínez, G. F.; Curfs-Breuker, I.; Fernández, C. M.; Boekhout, T.; Meis, J. F. Antimicrob. Agents Chemother. 2008, 52, 1580.
[59] Yin, W.; Tsutsumi, K. Cardiovasc. Drug Rev. 2003, 21, 133.
[60] Hosie, J.; Scott, A. K.; Petrie, J. C.; Cockshott, I. D. Br. J. Clin. Pharmacol. 1990, 29, 333.
[61] Sánchez, C.; Bøgesø, K. P.; Ebert, B.; Reines, E. H.; Braestrup, C. Psychopharmacology (Berl) 2004, 174, 163.
[62] Usui, F.; Maeda, K.; Kusai, A.; Nishimura, K.; Yamamoto, K. Int. J. Pharmol. 1997, 154, 59.
[63] Hughes, Z. A.; Starr, K. R.; Langmead, C. J.; Hill, M.; Bartoszyk, G. D.; Hagan, J. J.; Middlemiss, D. N.; Dawson, L. A. Eur. J. Pharmacol. 2005, 510, 49.
[64] Bourin, M.; NicDhonnchadha, B. A.; Claude, C. M.; Dib, M.; Hascoet, M. Behav. Brain Res. 2001, 124, 87.
[65] Sanna, E.; Busonero, F.; Talani, G.; Carta, M.; Massa, F.; Peis, M.; Maciocco, E.; Biggio, G. Eur. J. Pharmacol. 2002, 451, 103.
[66] John, G. W.; Perez, M.; Pauwels, P. J.; Le Grand, B.; Verscheure, Y.; Colpaert, F. C. CNS Drug Rev. 2000, 6, 278.
[67] White, W. B.; Cannon, C. P.; Heller, S. R.; Nissen, S. E.; Bergenstal, R. M.; Bakris, G. L.; Perez, A. T.; Fleck, P. R.; Mehta, C. R.; Kupfer, S.; Wilson, C.; Cushman, W. C.; Zannad, F. N. Engl. J. Med. 2013, 369, 1327.
[68] (a) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049.
(b) Dey, A.; Agasti, S.; Maiti, D. Org. Biomol. Chem. 2016, 14, 5440.
(c) Yang, J. Org. Biomol. Chem. 2015, 13, 1930.
(d) Qiu, G.; Wu, J. Org. Chem. Front. 2015, 2, 169.
(e) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843.
(f) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174.
[69] Li, W.; Xu, Z.; Sun, P.; Jiang, X.; Fang, M. Org. Lett. 2011, 13, 1286.
[70] Du, B.; Jiang, X.; Sun, P. J. Org. Chem. 2013, 78, 2786
[71] Reddy, M. C.; Jeganmohan, M. Chem. Commun. 2015, 51, 10738
[72] Li, W.; Sun, P. J. Org. Chem. 2012, 77, 8362.
[73] Chotana, G. A.; Rak, M. A.; Smith, M. R. J. Am. Chem. Soc. 2005, 127, 10539.
[74] Bera, M.; Modak, A.; Patra, T.; Maji, A.; Maiti, D. Org. Lett. 2014, 16, 5760.
[75] Tang, R. Y.; Li, G.; Yu, J.-Q. Nature 2014, 507, 215.
[76] Bag, S.; Patra, T.; Modak, A.; Deb, A.; Maity, S.; Dutta, U.; Dey, A.; Kancherla, R.; Maji, A.; Hazra, A.; Bera, M.; Maiti, D. J. Am. Chem. Soc. 2015, 137, 11888.
[77] Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M. J.; Tran, V.; Vijayendran, K. G.; Brunden, K. R.; Kozlowski, M. C.; Thomas, C. J.; Smith Ⅲ, A. B.; Huryn, D. M.; Ballatore, C. J. Med. Chem. 2016, 59, 3183.
[78] Smith, D. A. Metabolism, Pharmaco Kinetics and Toxicity of Functional Groups:Impact of the Building Blocks of Medicinal Chemistry in ADMET, Royal Society of Chemistry, Cambridge, UK, 2010, Chapter 3, pp. 99~167.
[79] (a) Kaeding, W. J. Org. Chem. 1961, 26, 3144.
(b) Kaeding, W.; Shulgin, A. T. J. Org. Chem. 1962, 27, 3551.
(c) Kaeding, W. J. Org. Chem. 1964, 29, 2556.
(d) Kaeding, W. J. Org Chem. 1965, 30, 3750.
(e) Kaeding, W. J. Org. Chem. 1965, 30, 3754
[80] Drapeau, M. P.; Gooβen, L. J. Chem.-Eur. J. 2016, 22, 1.
[81] Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.
[82] Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 264.
[83] Chiong, H. A.; Pham, Q. N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879.
[84] (a) Giri, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.
(b) Wang, D. H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676.
[85] Huang, L.; Biafora, A.; Zhang, G.; Bragoni, V.; Gooßen, L. J. Angew. Chem., Int. Ed. 2016, 55, 6933.
[86] Mamone, P.; Danoun, G.; Gooßen, L. Angew. Chem., Int. Ed. 2013, 52, 6704.
[87] Reinaud, O.; Capdevielle, P.; Maumy, M. J. Chem. Soc., Chem. Commun. 1990, 566.
[88] Taktak, S.; Flook, M.; Foxman, B. M.; Que, L. Jr.; Rybak-Akimova, E. V. Chem. Commun. 2005, 42, 5301.
[89] (a) Ng, K. H.; Ng, F. N.; Yu, W. Y. Chem. Commun. 2012, 48, 11680.
(b) Ng, F. N, Zhou, Z.; Yu, W. Y. Chem.-Eur. J. 2014, 20, 4474.
[90] Lee, D.; Chang, S. Chem.-Eur. J. 2015, 21, 5364.
[91] Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215.
[92] Wang, D.-H.; Masa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190.
[93] Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058.
[94] Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.
[95] Wang, G.-W.; Yuan, T.-T.; Li, D.-D. Angew. Chem., Int. Ed. 2011, 50, 1380.
[96] Karthikeyan, J.; Cheng, C. H. Angew. Chem., Int. Ed. 2011, 50, 9880.
[97] (a) Pimparkar, S.; Jeganmohan, M. Chem. Commun. 2014, 50, 12116.
(b) Peng X.; Wang, W.; Jiang, C.; Sun, D.; Xu, Z.; Tung, C.-H. Org. Lett. 2014, 16, 5354.
[98] Karthikeyan, J.; Haridharan, R.; Cheng, C.-H. Angew. Chem., Int. Ed. 2012, 51, 12343.
[99] Li, D.-D.; Yuan, T.-T.; Wang, G.-W. Chem. Commun. 2011, 47, 12789
[100] Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326.
[101] Zhong, H.; Yang, D.; Wang, S.; Huang, J. Chem. Commun. 2012, 48, 3236
[102] Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
[103] Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
[104] Yang, W.; Wang, S.; Zhang, Q.; Liu, Q.; Xu, X. Chem. Commun. 2015, 51, 661.
[105] Yang, W.; Sun, J.; Xu, X.; Zhang, Q.; Liu, Q. Chem. Commun. 2014, 50, 4420.
[106] Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318.
[107] Wang, Z.; Kuninobu, Y.; Kanai, M. J. Am. Chem. Soc. 2015, 137, 6140.
[108] Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
[109] Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452.
[110] Dai, H. X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7222.
[111] Pham, M. V, Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 10610.
[112] Xie, W.; Yang, J.; Wang, B.; Li, B. J. Org. Chem. 2014, 79, 8278.
[113] Li, X.; Dong, Y.; Qu, F.; Liu, G. J. Org. Chem. 2015, 80, 790.
[114] Zhang, Z.; Tanaka, K.; Yu, J.-Q. Nature 2017, 543, 538.
[115] Wallace, M. D.; McGuire, M. A.; Yu, M. S.; Goldfinger, L.; Liu, L.; Dai, W.; Shilcrat, S. Org. Process Res. Dev. 2004, 8, 738
[116] Fray, M. J.; Gillmore, A. T.; Glossop, M. S.; McManus, D. J.; Moses, I. B.; Praquin, C. F. B.; Reeves, K. A.; Thompson, L. R. Org. Process Res. Dev. 2010, 14, 263.
[117] Madasu, S. B.; Vekariya, N. A.; Koteswaramma, C.; Islam, A.; Sanasi, P. D.; Korupolu, R. B. Org. Process Res. Dev. 2012, 16, 2025.
[118] Ackermann, L. Org. Process Res. Dev. 2015, 19, 260.
[119] Seki, M. Org. Process Res. Dev. 2016, 20, 867.
[120] (a) Huang, J.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.
(b) Huang, J.; Wang, X.; Chan, J. Sustainable Catalysis:Challenges and Practices for the Pharmaceutical and Fine Chemical Industries, Eds.:Dunn, P. J.; Hii, K. K.; Krische, M. J.; Williams, M. T., Wiley Inc., Hoboken, New Jersey, 2013, Chapter 12.
[121] Gauthier, D. R. Jr.; Limanto, J.; Devine, P. N.; Desmond, R. A.; Szumigala, R. H. Jr.; Foster, B. S, Volante, R. P. J. Org. Chem. 2005, 70, 5938.
[122] Ouellet, S. G.; Roy, A.; Molinaro, C.; Angelaud, R.; Marcoux, J. F.; O'shea, P. D.; Davies, J. W. J. Org. Chem. 2011, 76, 1436.
[123] (a) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.
(b) Yang, Y.-F.; Cheng, G.-J.; Liu, P.; Leow, D.; Sun, T.-Y.; Chen, P.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 344.
(c) Yang, G.; Lindovska, P.; Zhu, D.; Kim, J.; Wang, P.; Tang, R.-Y.; Movassaghi, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 10807.

文章导航

/