综述与进展

芳香化合物的电化学C—H键官能化研究进展

  • 吴亚星 ,
  • 席亚超 ,
  • 赵明 ,
  • 王思懿
展开
  • 中国矿业大学化工学院 徐州 221116

收稿日期: 2018-04-01

  修回日期: 2018-05-13

  网络出版日期: 2018-06-06

基金资助

中央高校基本科研业务费(No.2015XKMS048)、江苏省自然科学基金(No.BK20160254)、国家自然科学基金(No.U1710102)、中国矿业大学“十三五”品牌专业建设资助项目.

Progress in Electrochemical C—H Functionalizations of Aromatic Compounds

  • Wu Yaxing ,
  • Xi Yachao ,
  • Zhao Ming ,
  • Wang Siyi
Expand
  • School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116

Received date: 2018-04-01

  Revised date: 2018-05-13

  Online published: 2018-06-06

Supported by

Project supported by the Fundamental Research Funds for the Central Universities (No. 2015XKMS048), the Natural Science Foundation of Jiangsu Province (No. BK20160254), and the National Natural Science Foundation of China (No. U1710102).

摘要

C—H键是有机化合物中最基本和最广泛的化学键.利用电化学方法实现芳香化合物C—H键的官能化和直接转化可以避免反应物的预官能化,是一种绿色可持续且更具有原子经济性的转化途径.该方法借助阳极上的氧化反应实现芳香化合物C—H键的官能化,完成C—X键(X=C、N、O、S)的构建和稠环化合物的合成,无需使用氧化剂.通过控制电极材料、电解质和溶剂等条件,也可以实现特定的化学选择性和区域选择性.综述了近年来芳香化合物的电化学C—H键官能化这一领域的研究进展.

本文引用格式

吴亚星 , 席亚超 , 赵明 , 王思懿 . 芳香化合物的电化学C—H键官能化研究进展[J]. 有机化学, 2018 , 38(10) : 2590 -2605 . DOI: 10.6023/cjoc201804001

Abstract

Carbon-hydrogen bonds are the most extensive and basic chemical bonds existed in organic compounds. Electrochemical functionalization and direct conversion of aromatic C—H bonds is a green, sustainable, and atomically economical transformation pathway, which avoids the pre-functionalization of reactants. The anodic electrooxidation of aromatics allows the formation of C—X (X=C, N, O, S) bonds and the preparation of fused aromatic rings without the use of oxidants. Certain C—H activation reactions with chemoselectivity and regioselectivity can also be achieved by the optimization of electrode materials, electrolytes, and solvents. Vourious reactions focusing on the electrochemical functionalizations of C—H bonds in aromatic compounds are mainly reviewed.

参考文献

[1] Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[2] Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302.
[3] Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
[4] Li, Z.; Li, C. J.; Herrerías, C. I.; Yao, X. Chem. Rev. 2007, 107, 6.
[5] Bergman, R. G. Nature 2007, 466, 391.
[6] Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293.
[7] Liao, K.; Pickel, T. C.; Boyarskikh, V.; Bacsa, J.; Musaev, D. G.; Davies, H. Nature 2016, 47, 230.
[8] Evan, J. H.; Brandon, R. R.; Yong, C.; Tang, J. Z.; Ke, C.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.
[9] Liu, W.; Zheng, X. Y.; Zeng, J. G.; Cheng, P. Chin. J. Org. Chem. 2017, 37, 1(in Chinese). (刘薇, 郑昕宇, 曾建国, 程辟, 有机化学, 2017, 37, 1.)
[10] Liu, Y. R.; Hu, B. L.; Zhang, X. G. Chin. J. Chem. 2017, 35, 307
[11] Pei, P. K.; Zhang, F.; Yi, H.; Lei, A. W. Acta Chimi. Sinica 2017, 75, 15(in Chinese). (裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
[12] Li, T. T.; Jin, P. Y.; Lin, S.; Zhi, Y. G.; Liu, X. Y. Chin. J. Chem. 2016, 34, 490.
[13] Schopohl, M. C.; Faust, A.; Mirk, D.; Fröhlich, R.; Kataeva, O. Eur. J. Org. Chem. 2010, 2987.
[14] Waldvogel, S. R.; Mirk, D. Tetrahedron Lett. 2000, 31, 4769.
[15] Malkowsky, I. M.; Griesbach, U.; Pütter, H.; Waldvogel, S. R. Eur. J. Org. Chem. 2006, 4569.
[16] Kirste, A.; Martin, N.; Malkowsky, I. M.; Florian, S.; Andreas, F.; Waldvogel, S. R. Chem. Eur. J. 2009, 15, 2273
[17] Kirste, A.; Gregor, S.; Waldvogel, S. R. Org. Lett. 2011, 13, 3126.
[18] Kirste, A.; Shotaro, H.; Gregor, S.; Malkowsky, I. M.; Florian, S.; Andreas, F.; Toshio, F.; Waldvogel, S. R. Chem.-Eur. J. 2011, 17, 14164.
[19] Kirste, A.; Gregor, S.; Florian, S.; Andreas, F.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2010, 49, 971.
[20] Kirste, A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. J. Am. Chem. Soc. 2012, 43, 3571.
[21] Bernd, E.; Anton, W.; Dieter, S.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Chem.-Eur. J. 2015, 21, 12321.
[22] Sebastian, L.; Anton, W.; Bernd, E.; Dieter, S.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 10872.
[23] Bernd, E.; Dieter, S.; Marie, D. K.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2014, 53, 5210.
[24] Anton, W.; Dieter, S.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 11180.
[25] Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007, 349, 292.
[26] Saito, F.; Aiso, H.; Kochi, T.; Kakiuchi, F. Organometallics 2014, 33, 6704.
[27] Ma, C.; Zhao, C. Q.; Li, Y. Q.; Zhang, L. P.; Xu, X. T.; Zhang, K.; Mei, T. S. Chem. Commun. 2017, 53, 12189.
[28] Jensen, K. L.; Franke, P. T.; Nielsen, L. T.; Daasbjerg, K.; Joergensen, K. A. Angew. Chem., Int. Ed. 2010, 122, 133.
[29] Ho, X. H.; Mho, S. I.; Kang, H.; Jang, H. Y. Eur. J. Org. Chem. 2010, 4436.
[30] Fu, N.; Li, L.; Yang, Q.; Luo, S. Z. Org. Lett. 2017, 19, 2122.
[31] Li, L. J.; Jiang, Y. Y.; Lam, C. M.; Zeng, C. C.; Hu, L. M.; Little, R. D. J. Org. Chem. 2015, 80, 11021.
[32] Lara, S.; Enders, M.; Bernd, E.; Dieter, S.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2017, 56, 4877.
[33] Röse, P.; Emge, S.; König, C. A.; Hilt, G. Adv. Synth. Catal. 2017, 359, 1359.
[34] Morofuji, T.; Shimizu, A.; Yoshida, J. Angew. Chem., Int. Ed. 2012, 51, 7259.
[35] Arai, T.; Hiroyuki, T.; Nakabayashi, K.; Kashiwagi, T.; Mahito, A. Chem. Commun. 2015, 51, 4891.
[36] Gallardo, I.; Gonzalo, G.. Eur. J. Org. Chem. 2008, 2463.
[37] Moutiers, G.; Pinson, J.; Terrier, F.; Goumont, R. Chem.-Eur. J. 2001, 7, 1712.
[38] Charushin, V. N.; Chupakhin, O. N. In Topics in Heterocyxlic Chemistry, Ed.:Selig, P., Springer International Publishing, Cham. 2013, Vol. 37, pp. 1~50.
[39] Gallardo, I.; Guirado, G.; Marquet, J. Chem.-Eur. J. 2001, 7, 1759.
[40] Gallardo, I.; Gonzalo, G.; Marquet, J. J. Org. Chem. 2002, 67, 2548.
[41] Gallardo, I.; Gonzalo, G.; Marquet, J. J. Org. Chem. 2003, 68, 631.
[42] Gallardo, I.; Gonzalo, G.; Marquet, J. J. Org. Chem. 2003, 68, 7334.
[43] Gallardo, I.; Guirado, G.; Marquet, J. Eur. J. Org. Chem. 2002, 261.
[44] Wang, Q. Q.; Xu, K.; Jiang, Y. Y.; Liu, Y. G.; Sun, B. G.; Zeng, C. C. Org. Lett. 2017, 19, 5517.
[45] Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2013, 135, 5000.
[46] Möhle, S.; Herold, S.; Richter, F.; Nefzger, H.; Waldvogel, S. R. ChemElectroChem 2017, 4, 2196.
[47] Herold, S.; Möhle, S.; Zirbes, M.; Richter, F.; Nefzger, H.; Waldvogel, S. R. Eur. J. Org. Chem. 2016, 1274.
[48] Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2014, 136, 4496.
[49] Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2015, 137, 9816.
[50] Watts, K.; Gattrell, W.; Beilstein, T. J. Org. Chem, 2011, 7, 1108.
[51] Nishiyama, S.; Amano, Y. Tetrahedron Lett. 2006, 37, 6505.
[52] Broese, T.; Francke, R. Org. Lett. 2016, 18, 5896.
[53] Gao, W. J.; Li, W. C.; Zeng, C. C.; Tian, H. Y.; Hu, L. M.; Little, R. D. J. Org. Chem. 2014, 79, 9613.
[54] Liang, S.; Zeng, C. C.; Tian, H. Y.; Sun, B. G.; Luo X. G.; Ren F. Z. J. Org. Chem. 2016, 2016, 11157.
[55] Gao, X. L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 4195
[56] Gallardo, I.; Guirado, G.; Marquet, J. Eur. J. Org. Chem. 2002, 2002, 251.
[57] Hussey, C. L.; Achord, J. M. Annal. Dogmatic Theology 1981, 128, 2556.
[58] Cortona, M. N.; Vettorazzi, N. R.; Silber, J. J.; Sereno, L. E. J. Electroanal. Chem. 1999, 470, 157.
[59] Nematollahi, D.; Ariapad, A.; Rafiee, M. J. Electrochem. Soc. 2007, 602, 37.
[60] Salahifar, E.; Nematollahi, D.; Bayat, M.; Mahyari, A.; Rudbari, H. A. Org. Lett. 2015, 17, 4666.
[61] Tajima, T.; Kishi, Y.; Atsushi, N. Electrochim. Acta 2009, 54, 5959.
[62] Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Tufatullin, A. I.; Kataeva, O. N.; David, A. V.; Budnikova, Y. H. Organometallics 2013, 32, 4785.
[63] Dudkina, Y. B.; Gryaznova, T. V.; Sinyashin, O. G.; Budnikova, Y. H. Russ. Chem. Bull. 2015, 64, 1713.
[64] Li, Yi. Q.; Yang, Q. L.; Fang, P.; Mei, T. S.; Zhang, D. Y. Org. Lett. 2017, 19, 2905.
[65] Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204.
[66] Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. J. Am. Chem. Soc. 2017, 139, 18452.
[67] Nishiyama, S.; Yamamura, S. Synlett 2002, 533.
[68] Kazuki, M.; Takahashi, M.; Yamamura, S.; Nishiyama, S. Tetra-hedron 2001, 57. 5527.
[69] Kawabata, Y.; Naito, Y.; Saitoh, T.; Kawa, K.; Fuchigami, T.; Nishiyama, S. Eur. J. Org. Chem. 2013, 99.
[70] Naito, Y.; Tanabe, T.; Yuki, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron Lett. 2010, 51, 4776.
[71] Tanabe, T.; Doi, F.; Ogamino, T.; Nishiyama, S. Tetrahedron Lett. 2004, 45, 3477.
[72] Barjau, J.; Schnakenburg, G.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2011, 50, 1415.
[73] Michael, M.; Lars, A.; Caroline, S.; Joaquin, B.; Dieter, S.; Till, O.; Arne, L.; Siegfried, R. W. Eur. J. Org. Chem. 2015, 4876.
[74] Barjau, J.; Schnakenburg, G.; Waldvogel, S. R. Synthesis 2011, 2054.
[75] Barjau, J.; Königs, P.; Kataeva, O.; Waldvogel, S. R. Synlett 2008, 2309.
[76] Nematollahi, D.; Tammari, E. J. Org. Chem. 2005, 70, 7769.
[77] Zeng, C. C.; Liu, F. J.; Ping. D. W.; Cai, Y. L.; Zhong, R. G.; Becker, J. Y. J. Electroanal. Chem. 2009, 625, 131.
[78] Zeng, C. C.; Liu, F. J.; Ping, D. W.; Hu, L. M.; Cai, Y. L.; Zhong, R. G.. Tetrahedron 2009, 65, 4505.
[79] Zeng, C. C.; Ping, D. W.; Zhang, S. C.; Zhong, R. G.; Becker, J. Y. J. Electroanal. Chem. 2008, 622, 90.
[80] Khodaei, M. M.; Alizadeh, A.; Pakravan, N. J. Org. Chem. 2008, 73, 2527.
[81] Fotouhi, L.; Asadi, S.; Tammari, E.; Heravi, M. M.; Nematollahi, D. Anal. Bioanal. Electrochem. 2009, 1, 216.
[82] Amani, A.; Nematollahi, D. J. Org. Chem. 2012, 77, 11130.
[83] Wang, P.; Tang, S.; Huang, P. F.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 3009.
[84] Nematollahi, D. N.; Ramazanali, R.; Maryam, M. Synth. Commun. 2003, 34, 2269.
[85] Nematollahi, D.; Beiginejad, H.; Varmaghani, F.; Bayat, M.; Salehzadeh, H. J. Electrochem. Soc. 2013, 160, 142.
[86] Zeng, C. C.; Liu, C. F.; Zeng, J.; Zhong, R. G.. J. Electroanal. Chem. 2007, 608, 85.
[87] Xiao, H. L.; Yang, C. W.; Zhang, N. T.; Zeng, C. C.; Hu, L. M.; Tian, H. Y.; Little, R. D. Tetrahedron 2013, 69, 658.
[88] Feng, M. L.; Xi, L. Y.; Chen, S. Y.; Yu, X. Q. Eur. J. Org. Chem. 2017, 2017, 2746.
[89] Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H. C. Angew. Chem., Int. Ed. 2016, 55, 9168.
[90] Hou, Z. W.; Mao, Z. Y.; Song, J.; Xu, H. C. ACS Catal. 2017, 7, 5810.
[91] Wu, Z. J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 4631.
[92] Xiong, P.; Xu, H.; Song, J. S.; Xu, H. C. J. Am. Chem. Soc. 2018, 140, 2460.
[93] Tang, S.; Gao, X. L.; Lei, A. W. Chem. Commun. 2017, 53, 3354.
[94] Wen, J. W.; Shi, W. Y.; Zhang, F.; Liu, D.; Tang, S.; Wang, H. M.; Lin, X. M.; Lei, A. W. Org. Lett. 2017, 19, 3131.
[95] Zhao, H. B.; Hou, Z. W.; Liu, Z. J.; Zhou, Z. F.; Song, J. S.; Xu, H. C. Angew. Chem. Int. Ed. 2017, 56, 587.
[96] Zhao, H. B.; Liu, Z. J.; Song, J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 12732.
[97] Inoue, K.; Ishikawa, Y.; Nishiyama, S. Org. Lett. 2010, 12. 436.
[98] Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron 2010, 66, 9779.
[99] Amano, Y.; Inoue, K.; Nishiyama, S. Synlett. 2008, 134.
[100] Morofuji, T.; Shimizu, A.; Yoshida, J. Chem.-Eur. J. 2015, 21, 3211.
[101] Wesenberg, L. J.; Herold, S.; Shimizu, A.; Yoshida, J.; Waldvogel, S. R. Chem.-Eur. J. 2017, 23, 12096.
[102] Xu, F.; Qian, X. Yang.; Li, Y. J.; Xu, H. C. Org. Lett. 2017, 19, 6332.
[103] Tile, G.; Anton, K.; Dieter, S.; Moeller, K. D.; Waldvogel, S. R. Chem. Commun. 2017, 53, 2974.
[104] Tile, G.; Anton, K.; Dieter, S.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317
[105] Zhang, S.; Li, L. J.; Wang, H. Q.; Li, Q.; Liu, W. M.; Xu. K, Zeng, C. C. Org. Lett. 2018, 20, 252.
[106] Qian, X. Y.; Li, S. Q.; Song, J. S.; Xu, H. C. ACS Catal. 2017, 7, 2730.
[107] Wang, P.; Tang, S.; Lei, A. W. Green Chem. 2017, 19, 2092.
[108] Folgueiras-Amador, A. A.; Qian, X. Y.; Xu, H. C.; Wirth, T. Chem.-Eur. J. 2018, 24, 487.
[109] Chiba, K.; Fukuda, M.; Kim, S.; Kitano, Y.; Tada, M. J. Org. Chem. 2000, 31, 7654.
[110] Elseedi, H. R.; Yamamura, S.; Nishiyama, S. Tetrahedron 2002, 58, 7485.
[111] Kim, S.; Noda, S.; Hayashi, K.; Chiba, K. Org. Lett. 2008, 10, 1827.
[112] Kim, S.; Hirose, K.; Uematsu, J.; Mikami, Y.; Chiba, K. Chem.-Eur. J. 2012, 18, 6284.
[113] Liu, K.; Tang, S.; Huang, P. F.; Lei, A. W. Nat. Commun. 2017, 8, 775.
[114] Tian, C.; Massignan, L.; Meyer, Tjark. H.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 2383.
[115] Xu, F.; Li, Y. Jie.; Huang, C.; Xu, H. C. ACS Catal. 2018, 8, 3820..
[116] Nematollahi, D.; Habibi, D.; Rahmati, M.; Rafiee, M. J. Org. Chem. 2004, 69, 2637.
[117] Hosseiny Davarani, S. S.; Nematollahi, D.; Shamsipur, M.; Najafi, N. M.; Masoumi, L.; Ramyar, S. J. Org. Chem. 2006, 71, 2139.
[118] Salehzadeh, H.; Nematollah, D.; Hesari, H. Green Chem. 2014, 45, 2441.
[119] Zeng, C. C.; Liu, F. J.; Ping, D. W.; Hu, L. M.; Cai, Y. L.; Zhong, R. G.. J. Org. Chem. 2010, 41, 6386.
[120] Bai, Y. X.; Ping, D. W.; Little, R. D.; Tian, H. Y.; Hu, L. M.; Zeng, C. C. Tetrahedron 2011, 67, 9334.

文章导航

/