无过渡金属参与的羰基化反应进展
收稿日期: 2018-04-10
修回日期: 2018-05-28
网络出版日期: 2018-06-07
基金资助
国家自然科学基金(No.21776139)、江苏省自然科学基金(No.BK20161553)、江苏省高校自然科学基金(No.16KJB150019)、南京师范大学青蓝工程和江苏省优势学科资助项目.
Research Progress in Transition-Metal-Free Carbonylation Reactions
Received date: 2018-04-10
Revised date: 2018-05-28
Online published: 2018-06-07
Supported by
Project supported by the National Natural Science Foundation of China (No. 21776139), the Natural Science Foundation of Jiangsu Province (No. BK20161553), the Natural Science Foundation of Jiangsu Provincial Colleges and Universities (No. 16KJB150019), the Qing Lan Project of Nanjing Normal University and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
徐方宁 , 韩维 . 无过渡金属参与的羰基化反应进展[J]. 有机化学, 2018 , 38(10) : 2519 -2533 . DOI: 10.6023/cjoc201804017
Carbon monoxide is a readily available and cheap C1 feedstock. Carbonylation, the direct incorporation of carbon monoxide into organic molecules, is a very important and fundamental chemical transformation. In recent years, developing transition-metal-free systems for the carbonylation has attracted highly attention from many researchers. The recent rearch progress of transition-metal-free carbonylations for the synthesis of aldehydes, ketones, esters, amides, acids, anhydrides, acyl chloride, and alcohols is reviewed. And the development and application prospects for transition-metal-free carbonylation are also discussed.
Key words: carbon monoxide; carbonylation; transition-metal-free; synthetic methods
[1] (a) Beller, M. Catalytic Carbonyladon Reactions, Springer-Verlag Berlin, Heidelberg, 2006.
(b) Kollα, L. Modem Carbonylation Methods, Wiley-VCH, Weinheim, 2008.
(c) Wu, X.-F.; Beller, M. Transition Metal Catalyzed Carbonylation Reactions-Carbonylative Activation of C-X Bonds, Springer-Verlag Berlin, Heidelberg, 2013.
[2] Hagen, J. Industrial Catalysis, Wiley-VCH, Weinheim, 2006.
[3] Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation:Direct Synthesis of Carbonyl Compounds, Plenum Press, New York, 1991.
[4] (a) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
(b) Welch, C. J.; Albaneze-Walker, J.; Leonard, W. R.; Biba, M.; DaSilva, J.; Henderson, D.; Laing, B.; Mathre, D. J.; Spencer, S.; Bu, X.; Wang, T. Org. Process Res. Dev. 2005, 9, 198.
(c) Liu, Y.-Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667(in Chinese). (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667.)
(d) Yuan, S.-T.; Wang, Y.-H.; Qiu, G.-Y.-S.; Liu, J.-B. Chin. J. Org. Chem. 2017, 37, 566(in Chinese). (袁斯甜, 王艳华, 邱观音生, 刘晋彪, 有机化学, 2017, 37, 566.)
[5] Ryu, I.; Kusano K.; Ogawa, A.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1990, 112, 1295.
[6] Ryu, I.; Kusano, K.; Masumi, N.; Yamazaki, H.; Ogawa, A.; Sonoda N. Tetrahedron Lett. 1990, 31, 6887.
[7] Ryu, I.; Hasegawa, M.; Kurihara, A.; Ogawa, A.; Tsunoi, S.; Sonoda, N. Synlett 1993, 143.
[8] Ryu, I.; Uehara, S.; Hirao, H.; Fukuyama, T. Org. Lett. 2008, 10, 1005.
[9] Tsunoi, S.; Ryu, I.; Yamasaki, S.; Fukushima, H.; Tanaka, M.; Komatsu, M.; Sonoda, N. J. Am. Chem. Soc. 1996, 118, 10670.
[10] Uenoyama, Y.; Tsukida M.; Doi, T.; Ryu, I.; Studer, A. Org. lett. 2005, 7, 2985.
[11] Nishii, Y.; Nagano, T.; Gotoh, H.; Nagase, R.; Motoyoshiya, J.; Aoyama, H.; Tanabe, Y. Org. Lett. 2007, 9, 563.
[12] Jin, F.-L.; Han, W. Chem. Commun. 2015, 51, 9133.
[13] Jin, F.-L.; Zhong, Y.-Z.; Zhang, X.; Zhang, H.-C.; Zhao, Q.; Han, W. Green Chem. 2016, 18, 2598.
[14] Han, W.; Chen, J.-J.; Jin, F.-L.; Yuan, X.-R. Synlett 2018, 369.
[15] Gu, L.-J.; Jin, C.; Liu, J.-Y. Green Chem. 2015, 17, 3733.
[16] Zhang, H.-T.; Gu, L.-J.; Huang, X.-Z.; Wang, R.; Jin, C.; Li, G.-P. Chin. Chem. Lett. 2016, 27, 256.
[17] Li, X.-G.; Liang, D.-Q.; Huang, W.-Z.; Zhou, H.-F.; Li, Z.; Wang, B.-L.; Ma, Y.-H.; Wang, H. Tetrahedron 2016, 72, 8442.
[18] Nagahara, K.; Ryu, I.; Komatsu, M.; Sonoda, N. J. Am. Chem. Soc. 1997, 119, 5465.
[19] Kreimerman, S.; Ryu, I.; Minakata, S.; Komatsu, M. Org. Lett. 2000, 2, 389.
[20] Zhang, H.; Shi, R.-Y.; Ding, A.-X.; Lu, L.-J.; Chen, B.-R.; Lei, A.-W. Angew. Chem., Int. Ed. 2012, 51, 12542.
[21] Fukuoka, S. Ind. Eng. Chem. Res. 2016, 55, 4830.
[22] Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 2265.
[23] Majek, M.; Wangelin, A. J. Angew. Chem., Int. Ed. 2015, 54, 2270.
[24] Koziakov, D.; Wangelin, A. J. Org. Biomol. Chem. 2017, 15, 6715.
[25] Lu, L.-J.; Cheng, D.-Y.; Zhan, Y.-F.; Shi, R.-Y.; Chiang, C.-W.; Lei, A.-W. Chem. Commun. 2017, 53, 6852.
[26] Kim, S.; Kim, S.; Otsuka, N.; Ryu, I. Angew. Chem., Int. Ed. 2005, 44, 6183.
[27] Ryu, I.; Nagahara, K.; Kambe, N.; Sonoda, N.; Kreimerman, S.; Komatsu, M. Chem. Commun. 1998, 18, 1953.
[28] Kawamoto, T.; Sato, A.; Ryu, I. Chem.-Eur. J. 2015, 21, 14764.
[29] Lin, M.-R.; Sen, A. J. Chem. Soc., Chem. Commun. 1992, 892.
[30] Kato, S.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 1998, 63, 222.
[31] Kirillova, M. V.; Kirillov A. M.; Kuznetsov, M. L.; Silva, J. A. L.; Silva, J. J. R. F.; Pombeiro, A. J. L. Chem. Commun. 2009, 2353.
[32] Thaler, W. A. J. Am. Chem. Soc. 1966, 88, 4278.
[33] Gupta, V.; Kahne, D. Tetrahedron Lett. 1993, 34, 591.
[34] Ryu, I.; Niguma, T.; Minakata, S.; Komatsu, M. Tetrahedron Lett. 1997, 38, 7883.
[35] Kobayashi, S.; Kawamoto, T.; Uehara, S.; Fukuyama, T.; Ryu, I. Org. Lett. 2010, 12, 1548.
[36] Kawamoto, T.; Matsubara, H.; Ryu, I. Chem. Lett. 2014, 43, 1140.
[37] Kawamoto, T.; Okada, T.; Curran, D. P.; Ryu, I. Org. Lett. 2013, 15, 2144.
[38] Kawamoto, T.; Fukuyama, T.; Ryu, I. J. Am. Chem. Soc. 2012, 134, 875.
/
〈 |
|
〉 |