低价碘催化的氧化偶联反应研究进展
收稿日期: 2018-05-06
修回日期: 2018-05-30
网络出版日期: 2018-06-15
基金资助
国家自然科学基金(No.21502177)、河南省科技攻关计划(No.182102310903)和郑州轻工业学院博士研究基金(No.2014BSJJ032)资助项目.
Recent Advances in Oxidative Coupling Reaction Catalyzed by Low-Valence Iodine
Received date: 2018-05-06
Revised date: 2018-05-30
Online published: 2018-06-15
Supported by
Project supported by the National Natural Science Foundation of China (No. 21502177), the Scientific and Technological Breakthrough Plan of Henan Province (No. 182102310903) and the Doctoral Research Foundation of Zhengzhou University of Light Industry (No. 2014BSJJ032).
闫溢哲 , 崔畅 , 李政 . 低价碘催化的氧化偶联反应研究进展[J]. 有机化学, 2018 , 38(10) : 2501 -2518 . DOI: 10.6023/cjoc201805016
In recent years, low-valence iodine-catalyzed oxidative coupling reaction has made rapid progress, providing an effective method for the construction of C—C, C—O, C—N, C—S, C—P and other chemical bonds. Compared with the transition metal-catalyzed oxidation coupling reaction, this protocol is metal-free under mild conditions. It avoids the high cost and toxicity of transition metal catalyst, which meets the requirements of green chemistry. Therefore, iodine catalysis has attracted much attention of the synthetic chemists. The research progress on low-valence iodine-catalyzed oxidative coupling from 2010 to now is summarized, and outlook of this field is also prospected.
Key words: low-valence iodine; oxidative coupling; chemical bond; atom economy
[1] Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2013, 52, 2.
[2] Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science 2010, 328, 1376.
[3] Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.
[4] Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Chem.-Eur. J. 2011, 17, 4085.
[5] Rodríguez, A.; Moran, W. J. Org. Lett. 2011, 13, 2220.
[6] Wong, Y.-C.; Tseng, C.-T.; Kao, T.-T.; Yeh, Y.-C.; Shia, K.-S. Org. Lett. 2012, 14, 6024.
[7] Li, L.-T.; Huang, J.; Li, H.-Y.; Wen, L.-J.; Wang, P.; Wang, B. Chem. Commun. 2012, 48, 5187.
[8] Li, L.-T.; Li, H.-Y.; Xing, L.-J.; Wen, L.-J.; Wang, P.; Wang, B. Org. Biomol. Chem. 2012, 10, 9519.
[9] Lu, L.; Xiong, Q.; Guo, S.; He, T.; Xu, F.; Gong, J.; Zhu, Z.; Cai, H. Tetrahedron 2015, 71, 3637.
[10] Jia, Z.; Nagano, T.; Li, X.; Chan, A. S. C. Eur. J. Org. Chem. 2013, 858.
[11] Nobuta, T.; Tada, N.; Fujiya, A.; Kariya, A.; Miura, T.; Itoh, A. Org. Lett. 2013, 15, 574.
[12] Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett. 2013, 15, 1092.
[13] Zhang, C.; Liu, C.; Shao, Y.; Bao, X.; Wan, X. Chem.-Eur. J. 2013, 19, 17917.
[14] Huang, H.-M.; Li, Y.-J.; Ye, Q.; Yu, W.-B.; Han, L.; Jia, J.-H.; Gao, J.-R. J. Org. Chem. 2014, 79, 1084.
[15] Tang, S.; Liu, K.; Long, Y.; Gao, X.; Gao, M.; Lei A. Org. Lett. 2015, 17, 2404.
[16] Tang, S.; Liu, K.; Long, Y.; Qi, X.; Lan, Y.; Lei, A. Chem. Commun. 2015, 51, 8769.
[17] Laha, J. K.; Jethava, K. P.; Patel, S.; Patel, K. V. J. Org. Chem. 2017, 82, 76.
[18] Shi, X.; Zhang, F.; Luo, W.-K.; Yang, L. Synlett 2016, 28, 494.
[19] Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610.
[20] Yu, Y.; Jiao, L.; Wang, J.; Wang, H.; Yu, C.; Hao, E.; Boens, N. Chem. Commun. 2017, 53, 581.
[21] Dian, L.; Zhang-Negrerie, D.; Du, Y. Adv. Synth. Catal. 2017, 359, 3090.
[22] Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Chem. Commun. 2011, 47, 10827.
[23] Uyanik, M.; Hayashi, H.; Ishihara, K. Science 2014, 345, 291.
[24] Boominathan, S. S. K.; Hu, W.-P.; Senadi, G. C.; Vandavasi, J. K.; Wang, J.-J. Chem. Commun. 2014, 50, 6726.
[25] Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331.
[26] Guo, S.; Yu, J.-T.; Dai, Q.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 6240.
[27] Gao, W.-C.; Hu, F.; Huo, Y.-M.; Chang, H.-H.; Li, X.; Wei, W.-L. Org. Lett. 2015, 17, 3914.
[28] Liang, Y.-F.; Li, X.; Wang, X.; Zou, M.; Tang, C.; Liang, Y.; Song, S.; Jiao, N. J. Am. Chem. Soc. 2016, 138, 12271.
[29] Zhang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Biomol. Chem. 2013, 11, 4308.
[30] Yu, H.; Shen, J. Org. Lett. 2014, 16, 3204.
[31] Feng, J.; Liang, S.; Chen, S.-Y.; Zhang, J.; Fu, S.-S.; Yu, X.-Q. Adv. Synth. Catal. 2012, 354, 1287.
[32] Huang, J.; Li, L.-T.; Li, H.-Y.; Husan, E.; Wang P.; Wang, B. Chem. Commun. 2012, 48, 10204.
[33] Liu, L.; Yun, L.; Wang, Z.; Fu, X.; Yan, C.-H. Tetrahedron Lett. 2013, 54, 5383.
[34] Majji, G.; Guin, S.; Gogoi, A.; Rout, S. K.; Patel, B. K. Chem. Commun. 2013, 49, 3031.
[35] Xu, J.; Zhang, P.; Li, X.; Gao, Y.; Wu, J.; Tang, G.; Zhao, Y. Adv. Synth. Catal. 2014, 356, 3331.
[36] Xiong, B.; Wang, G.; Zhou, C.; Liu, Y.; Zhang, P.; Tang, K. J. Org. Chem. 2018, 83, 993.
[37] Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Org. Lett. 2012, 14, 3384.
[38] Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B; J. Org. Lett. 2011, 13, 3754.
[39] Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2013, 15, 5226.
[40] Beukeaw, D.; Udomsasporn, K.; Yotphan, S. J. Org. Chem. 2015, 80, 3447.
[41] Yang, Z.-Y.; Tian, T.; Du, Y.-F.; Li, S.-Y.; Chu, C.-C.; Chen, L.-Y.; Li, D.; Liu, J.-Y.; Wang, B. Chem. Commun. 2017, 53, 8050.
[42] Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem., Int. Ed. 2012, 51, 3231.
[43] Xu, K.; Hu, Y.; Zhang, S.; Zha, Z.; Wang, Z. Chem.-Eur. J. 2012, 18, 9793.
[44] Li, H.; Xie, J.; Xue, Q.; Cheng, Y.; Zhu, C. Tetrahedron Lett. 2012, 53, 6479.
[45] Gao, L.; Tang, H.; Wang, Z. Chem. Commun. 2014, 50, 4085.
[46] Tan, B.; Toda, N.; Barbas Ⅲ, C. F. Angew. Chem., Int. Ed. 2012, 51, 12538.
[47] Wang, G.; Yu, Q.-Y.; Chen, S.-Y.; Yu, X.-Q. Org. Biomol. Chem. 2014, 12, 414.
[48] Zhao, J.; Li, P.; Xia, C.; Li, F. Chem. Commun. 2014, 50, 4751.
[49] Zhang, X.; Wang, L. Green Chem. 2012, 14, 2141.
[50] Wei, W.; Shao, Y.; Hu, H.; Zhang, F.; Zhang, C.; Xu, Y.; Wan, X. J. Org. Chem. 2012, 77, 7157.
[51] Mai, W.-P.; Wang, H.-H.; Li, Z.-C.; Yuan, J.-W.; Xiao, Y.-M.; Yang, L.-R.; Mao, P.; Qu, L.-B. Chem. Commun. 2012, 48, 10117.
[52] Zhao, Q.; Miao, T.; Zhang, X.; Zhou, W.; Wang, L. Org. Biomol. Chem. 2013, 11, 1867.
[53] Lamani, M.; Prabhu, K. R. Chem.-Eur. J. 2012, 18, 14638.
[54] Tian, J.-S.; Jeffrey Ng, K. W.; Wong, J.-R.; Loh, T.-P. Angew. Chem., Int. Ed. 2012, 51, 9105.
[55] Ma, L.; Wang, X.; Yu, W.; Han, B. Chem. Commun. 2011, 47, 11333.
[56] Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2012, 48, 979.
[57] Yan, Y.; Zhang, Y.; Zha, Z.; Wang, Z. Org. Lett. 2013, 15, 2274.
[58] Yu, H.; Huang, W.; Zhang, F. Eur. J. Org. Chem. 2014, 3156.
[59] Ilangovan, A.; Satish, G. J. Org. Chem. 2014, 79, 4984.
[60] Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem., Int. Ed. 2012, 51, 8077.
[61] Lao, Z.-Q.; Zhong, W.-H.; Lou, Q.-H.; Li, Z.-J.; Meng, X.-B. Org. Biomol. Chem. 2012, 10, 7869.
[62] Zheng, Y.; Mao, J.; Chen, J.; Rong, G.; Liu, D.; Yan, H.; Chi, Y.; Xu, X. RSC Adv. 2015, 5, 50113.
[63] Yan, Y.; Xu, Y.; Niu, B.; Xie, H.; Liu, Y. J. Org. Chem. 2015, 80, 5581.
[64] Sun, K.; Wang, X.; Li, G.; Zhu, Z.; Jiang, Y.; Xiao, B. Chem. Commun. 2014, 50, 12880.
[65] Rajamanickam, S.; Majji, G.; Santra, S. K.; Patel, B. K. Org. Lett. 2015, 17, 5586.
[66] Yan, Y.; Li, Z.; Li, H.; Cui, C.; Shi, M.; Liu, Y. Org. Lett. 2017, 19, 6228.
[67] Luo, Z.; Jiang, Z.; Jiang, W.; Lin, D. J. Org. Chem. 2018, 83, 3710.
[68] Xue, Q.; Xie, J.; Li, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 3700.
[69] Zhao, D.; Wang, T.; Shen, Q.; Li, J.-X. Chem. Commun. 2014, 50, 4302.
[70] Zhao, D.; Shen, Q.; Li, J.-X. Adv. Synth. Catal. 2015, 357, 339.
[71] Huang, H.; Chen, W.; Xu, Y.; Li, J. Green Chem. 2015, 17, 4715.
[72] Luo, W.-K.; Shi, X.; Zhou, W.; Yang, L. Org. Lett. 2016, 18, 2036.
[73] Zhang, X.; Wang, M.; Li, P.; Wang, L. Chem. Commun. 2014, 50, 8006.
[74] Tang, S.; Wu, Y.; Liao, W.; Bai, R.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 4496.
[75] Xiao, F.; Chen, H.; Xie, H.; Chen, S.; Yang, L.; Deng, G.-J. Org. Lett. 2014, 16, 50.
[76] Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084.
[77] Zhao, J.; Huang, H.; Wu, W.; Chen, H.; Jiang, H. Org. Lett. 2013, 15, 2604.
[78] Liao, Y.; Jiang, P.; Chen, S.; Qi, H.; Deng, G.-J. Green Chem. 2013, 15, 3302.
[79] Cao, H.; Yuan, J.; Liu, C.; Hu, X.; Lei, A. RSC Adv. 2015, 5, 41493.
[80] Jiang, Y.; Zou, J.-X.; Huang, L.-T.; Peng, X.; Deng, J.-D.; Zhu, L.-Q.; Yang, Y.-H.; Feng, Y.-Y.; Zhang, X.-Y.; Wang, Z. Org. Biomol. Chem. 2018, 16, 1641.
[81] Yuan, J.; Ma, X.; Yi, H.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 14386.
[82] Xiao, F.; Chen, S.; Chen, Y.; Huang, H.; Deng, G.-J. Chem. Commun. 2015, 51, 652.
[83] Li, X.; Xu, X.; Zhou, C. Chem. Commun. 2012, 48, 12240.
[84] Wang, Q.; Xu, Z. Chin. J. Org. Chem. 2013, 33, 2430(in Chinese). (王倩, 徐洲, 有机化学, 2013, 33, 2430.)
[85] Sun, K.; Lv, Y.; Chen, Y.; Zhou, T.; Xing, Y.; Wang, X. Org. Biomol. Chem. 2017, 15, 4464.
[86] Dhineshkumar, J.; Prabhu, K. R. Org. Lett. 2013, 15, 6062.
[87] Wang, J.; Huang, X.; Ni, Z.; Wang, S.; Wu, J.; Pan, Y. Green Chem. 2015, 17, 314.
[88] Yuan, J.; Liu, C.; Lei, A. Org. Chem. Front. 2015, 2, 677.
[89] Zhang, J.; Jiang, J.; Li, Y.; Wan, X. J. Org. Chem. 2013, 78, 11366.
[90] Yan, Y.; Niu, B.; Xu, K.; Yu, J.; Zhi, H.; Liu, Y. Adv. Synth. Catal. 2016, 358, 212.
[91] Feng, J.-B.; Wu, X.-F. Org. Biomol. Chem. 2016, 14, 6951.
/
〈 |
|
〉 |