综述与进展

手性传感器研究进展

  • 熊斐 ,
  • 李莉
展开
  • 中国医学科学院&北京协和医学院药物研究所 活性物质发现与适药化研究北京市重点实验室 北京 100050

收稿日期: 2018-05-20

  修回日期: 2018-06-05

  网络出版日期: 2018-06-22

基金资助

中国医学科学院医学与健康科技创新工程(No.2016-I2M-3-009)资助项目.

Advances in Development of Chiral Sensors

  • Xiong Fei ,
  • Li Li
Expand
  • a Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050

Received date: 2018-05-20

  Revised date: 2018-06-05

  Online published: 2018-06-22

Supported by

Project supported by the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (No. 2016-I2M-3-009).

摘要

手性化合物在不对称合成、生物学和医药学等领域发挥着重要作用,建立快速、灵敏、高选择性的手性分析方法意义重大.手性传感器因其在确定对映体的绝对构型及对映体过量值中具有简单、快速、灵敏和实时等优点,备受研究者的青睐.聚焦于荧光传感器、圆二色谱传感器、紫外-可见传感器、核磁传感器和质谱传感器,主要介绍了各种传感器的特点及原理,综述了近年来它们在手性识别中的应用,并展望了手性传感器的发展前景.

本文引用格式

熊斐 , 李莉 . 手性传感器研究进展[J]. 有机化学, 2018 , 38(11) : 2927 -2936 . DOI: 10.6023/cjoc201805042

Abstract

Chiral compounds play an essential role in asymmetric synthesis, biology, medical field and pharmacology. It is necessary to establish fast, sensitive and high enantioselective chiral analysis methods. Chiral sensors, which could determine the absolute configuration and the value of enantiomeric excess of enantiomers, have the advantages of simple, rapid, sensitive and real-time. Herein, the review is focused on the recent progress of chiral fluorescent sensors, circular dichroism sensors, UV-Vis sensors, NMR sensors and MS sensors. Their characteristics, sensing mechanism and applications in chiral recognition are reviewed, and the prospects of chiral sensors are also discussed.

参考文献

[1] Wu, L.; Vogt, F. G. J. Pharm. Biomed. Anal. 2012, 69, 133.
[2] Yun, Y.; Gellman, A. J. Nat. Chem. 2015, 7, 520.
[3] Tang, S.; Bin, Q.; Chen, W.; Bai, Z.-W.; Huang, S.-H. J. Chromatogr. A 2016, 1440, 112.
[4] Zhang, J.-H.; Xie, S.-M.; Zhang, M.; Zi, M.; He, P.-G.; Yuan, L.-M. Anal. Chem. 2014, 86, 9595.
[5] Kalíková, K.; Šlechtová, T.; Vozka, J.; Tesarová, E. Anal. Chim. Acta 2014, 821, 1.
[6] He, J.; Wang, X.; Morill, M.; Shamsi, S. A. Anal. Chem. 2012, 84, 5236.
[7] Fortuna, A.; Alves, G.; Falcão, A. Biomed. Chromatogr. 2014, 28, 27.
[8] Shen, Z.; Lv, C.; Zeng, S. J. Pharm. Anal. 2016, 6, 1.
[9] Sun, W.; Guo, S.; Hu, C.; Fan, J.; Peng, X. Chem. Rev. 2016, 116, 7768.
[10] Zhang, X.; Yin, J.; Yoon, J. Chem. Rev. 2014, 114, 4918.
[11] You, L.; Zha, D.; Anslyn, E. V. Chem. Rev. 2015, 115, 7840.
[12] Li, Z.; Mo, Z.; Meng, S.; Gao, H.; Niu, X.; Guo, R. Anal. Methods 2016, 8, 8134.
[13] Trojanowicz, M. Electrochem. Commun. 2014, 38, 47.
[14] Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Chem. Rev. 2015, 115, 7944.
[15] Pu, L. Acc. Chem. Res. 2011, 45, 150.
[16] Chen, Z.; Wang, Q.; Wu, X.; Li, Z.; Jiang, Y.-B. Chem. Soc. Rev. 2015, 44, 4249.
[17] Wong, J. K.-H.; Todd, M. H.; Rutledge, P. J. Molecules 2017, 22, 200.
[18] De Silva, A. P.; Gunaratne, H. N.; Gunnlaugsson, T.; Huxley, A. J.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
[19] Pu, L. Chem. Rev. 2004, 104, 1687.
[20] Leung, D.; Kang, S. O.; Anslyn, E. V. Chem. Soc. Rev. 2012, 41, 448.
[21] Lu, Z.-Y.; Zhang, R.-K.; Li, G.-K. J. Instrum. Anal. 2017, 36, 570(in Chinese). (路振宇, 张润坤, 李攻科, 分析测试学报, 2017, 36, 570.)
[22] Qin, T.-Y.; Zeng, Y.; Chen, J.-P.; Yu, T.-J.; Li, Y. Acta Chim. Sinica 2017, 75, 1164(in Chinese). (秦天依, 曾毅, 陈金平, 于天君, 李嫕, 化学学报, 2017, 75, 1164.)
[23] Huang, Z.; Yu, S.; Zhao, X.; Wen, K.; Xu, Y.; Yu, X.; Xu, Y.; Pu, L. Chem.-Eur. J. 2014, 20, 16458.
[24] Yu, S.; Plunkett, W.; Kim, M.; Pu, L. J. Am. Chem. Soc. 2012, 134, 20282.
[25] Wen, K.; Yu, S.; Huang, Z.; Chen, L.; Xiao, M.; Yu, X.; Pu, L. J. Am. Chem. Soc. 2015, 137, 4517.
[26] Wang, C.; Wu, E.; Wu, X.; Xu, X.; Zhang, G.; Pu, L. J. Am. Chem. Soc. 2015, 137, 3747.
[27] Pu, L. Acc. Chem. Res. 2017, 50, 1032.
[28] Huang, Z.; Yu, S.; Wen, K.; Yu, X.; Pu, L. Chem. Sci. 2014, 5, 3457.
[29] Zhao, F.; Du, Y.; Tian, J.; Shi, D.; Wang, Y.; Hu, L.; Yu, S.; Yu, X.; Pu, L. Eur. J. Org. Chem. 2018, 2018, 1891.
[30] Zhou, Q.; Swager, T. M. J. Am. Chem. Soc. 1995, 117, 12593.
[31] Zhang, X.; Wang, C.; Wang, P.; Du, J.; Zhang, G.; Pu, L. Chem. Sci. 2016, 7, 3614.
[32] Song, F.; Wei, G.; Jiang, X.; Li, F.; Zhu, C.; Cheng, Y. Chem. Commun. 2013, 49, 5772.
[33] Xia, H.; Chen, X.; Chen, X.; Cheng, J.; Liu, Y.; Chen, X.; Zhang, Q.; Zou, G. Sens. Actuators, B 2018, 254, 44.
[34] Feng, H.-T.; Zhang, X.; Zheng, Y.-S. J. Org. Chem. 2015, 80, 8096.
[35] Akdeniz, A.; Minami, T.; Watanabe, S.; Yokoyama, M.; Ema, T.; Anzenbacher, P. Chem. Sci. 2016, 7, 2016.
[36] Wu, J.; Lu, J.; Liu, J.; Zheng, C.; Gao, Y.; Hu, J.; Ju, Y. Sens. Actuators, B 2017, 241, 931.
[37] Zeng, C.; Zhang, X.; Pu, L. Chem.-Eur. J. 2017, 23, 2432.
[38] Feagin, T. A.; Olsen, D. P.; Headman, Z. C.; Heemstra, J. M. J. Am. Chem. Soc. 2015, 137, 4198.
[39] Cai, P.; Wu, D.; Zhao, X.; Pan, Y. Analyst 2017, 142, 2961.
[40] Wanderley, M. M.; Wang, C.; Wu, C.-D.; Lin, W. J. Am. Chem. Soc. 2012, 134, 9050.
[41] Zhang, F.; Lu, C.; Wang, M.; Yu, X.; Wei, W.; Xia, Z. ACS Sens. 2018, 3, 304.
[42] Dai, L.; Wu, W.; Liang, W.; Chen, W.; Yu, X.; Ji, J.; Xiao, C.; Yang, C. Chem. Commun. 2018, 54, 2643.
[43] Yao, J.; Wu, W.; Liang, W.; Feng, Y.; Zhou, D.; Chruma, J. J.; Fukuhara, G.; Mori, T.; Inoue, Y.; Yang, C. Angew. Chem., Int. Ed. 2017, 56, 6869.
[44] Yang, C.; Inoue, Y. Chem. Soc. Rev. 2014, 43, 4123.
[45] Bentley, K. W.; Nam, Y. G.; Murphy, J. M.; Wolf, C. J. Am. Chem. Soc. 2013, 135, 18052.
[46] Zhang, P.; Wolf, C. Chem. Commun. 2013, 49, 7010.
[47] Bentley, K. W.; Wolf, C. J. Am. Chem. Soc. 2013, 135, 12200.
[48] Bentley, K. W.; Wolf, C. J. Org. Chem. 2014, 79, 6517.
[49] De, Z. L. S.; Ding, R.; Wolf, C. Org. Biomol. Chem. 2016, 14, 1934.
[50] Thanzeel, F. Y.; Wolf, C. Angew. Chem., Int. Ed. 2017, 56, 7276.
[51] Pilicer, S. L.; Bakhshi, P. R.; Bentley, K. W.; Wolf, C. J. Am. Chem. Soc. 2017, 139, 1758.
[52] Zhao, Y.-W.; Wang, Y.; Zhang, X.-M. ACS Appl. Mater. Interfaces 2017, 9, 20991.
[53] Seo, M.-S.; Sun, D.; Kim, H. J. Org. Chem. 2017, 82, 6586.
[54] Wang, L.-L.; Chen, Z.; Liu, W.-E.; Ke, H.; Wang, S.-H.; Jiang, W. J. Am. Chem. Soc. 2017, 139, 8436.
[55] Maeda, K.; Hirose, D.; Okoshi, N.; Shimomura, K.; Wada, Y.; Ikai, T.; Kanoh, S.; Yashima, E. J. Am. Chem. Soc. 2018, 140, 3270.
[56] Lu, W.; Yang, H.; Li, X.; Wang, C.; Zhan, X.; Qi, D.; Bian, Y.; Jiang, J. Inorg. Chem. 2017, 56, 8223.
[57] Anyika, M.; Gholami, H.; Ashtekar, K. D.; Acho, R.; Borhan, B. J. Am. Chem. Soc. 2014, 136, 550.
[58] Tanasova, M.; Anyika, M.; Borhan, B. Angew. Chem., Int. Ed. 2015, 54, 4274.
[59] Gholami, H.; Zhang, J.; Anyika, M.; Borhan, B. Org. Lett. 2017, 19, 1722.
[60] Wolf, C.; Bentley, K. W. Chem. Soc. Rev. 2013, 42, 5408.
[61] Zor, E.; Bekar, N. Biosens. Bioelectron. 2017, 91, 211.
[62] Song, G.; Zhou, F.; Xu, C.; Li, B. Analyst 2016, 141, 1257.
[63] Tashkhourian, J.; Afsharinejad, M.; Zolghadr, A. R. Sens. Actuators, B 2016, 232, 52.
[64] Jafari, M.; Tashkhourian, J.; Absalan, G. Talanta 2018, 178, 870.
[65] Kubo, Y.; Maeda, S. Y.; Tokita, S.; Kubo, M. Nature 1996, 382, 522.
[66] Wei, J.; Guo, Y.; Li, J.; Yuan, M.; Long, T.; Liu, Z. Anal. Chem. 2017, 89, 9781.
[67] Fan, C.; Huang, X.; Han, L.; Lu, Z.; Wang, Z.; Yi, Y. Sens. Actuators, B 2016, 224, 592.
[68] Zhou, Y.; Zhang, J. F.; Yoon, J. Chem. Rev. 2014, 114, 5511.
[69] Jung, H. S.; Chen, X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2013, 42, 6019.
[70] Lesot, P.; Aroulanda, C.; Zimmermann, H.; Luz, Z. Chem. Soc. Rev. 2015, 44, 2330.
[71] Plotka, J. M.; Biziuk, M.; Morrison, C. TrAC, Trends Anal. Chem. 2011, 30, 1139.
[72] Aizawa, S. I.; Kidani, T.; Takada, S.; Ofusa, Y. Chirality 2015, 27, 353.
[73] Pirkle, W. H.; Hoover, D. J. Top. Stereochem. 1982, 13, 263.
[74] Silva, M. S. Molecules 2017, 22, 247.
[75] Bian, G.; Yang, S.; Huang, H.; Zong, H.; Song, L.; Fan, H.; Sun, X. Chem. Sci. 2016, 7, 932.
[76] Labuta, J.; Hill, J. P.; Ishihara, S.; Hanykova, L.; Ariga, K. Acc. Chem. Res. 2015, 48, 521.
[77] Zhao, Y.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 3221.
[78] Yu, X.; Yao, Z.-P. Anal. Chim. Acta 2017, 968, 1.

文章导航

/