研究论文

膦酰保护基促进选择性Hay偶联制备非对称1,3-二炔

  • 彭丽芬 ,
  • 彭超 ,
  • 汪明 ,
  • 唐子龙 ,
  • 焦银春 ,
  • 许新华
展开
  • a 湖南科技大学化学化工学院 理论有机化学与功能分子教育部重点实验室 精细聚合物可控制备及功能化应用湖南省重点实验室 湘潭 411201;
    b 湖南大学化学化工学院 化学生物传感与计量学国家重点实验室 长沙 410082

收稿日期: 2018-05-02

  修回日期: 2018-05-30

  网络出版日期: 2018-07-05

基金资助

国家自然科学基金(No.21402048)、湖南省自然科学基金(No.2018JJ3145)、湖南省教育厅一般项目(No.17C0629)、湖南科技大学博士启动基金(No.E51693)资助项目.

Phosphoryl Protecting Group Enabled Facile Synthesis of Unsymmetrical 1,3-Diynes by Selective Hay Coupling

  • Peng Lifen ,
  • Peng Chao ,
  • Wang Ming ,
  • Tang Zilong ,
  • Jiao Yinchun ,
  • Xu Xinhua
Expand
  • a Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201;
    b State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082

Received date: 2018-05-02

  Revised date: 2018-05-30

  Online published: 2018-07-05

Supported by

Project supported by the National Natural Science Foundation of China (No. 21402048), the Natural Science Fund Youth Project of Hunan Province (No. 2018JJ3145), the General Project of Hunan Education Department (No. 17C0629) and the Doctoral Foundation of Hunan University of Science and Technology (No. E51693).

摘要

报道了芳香末端炔烃与单膦酰基-保护二炔的选择性Hay偶联反应.Ph2P(O)的极性使得产物非对称1,3-二炔易与副产物分离.单膦酰基-保护二炔的低反应活性减少了自身氧化偶联,从而提高了目标产物的产率.很多芳香末端炔烃与单膦酰基-保护二炔都能应用于本Hay偶联反应,且相应非对称1,3-二炔产物的产率为中等到好.产物非对称1,3-二炔能用于合成非对称炔-二炔烃及环多炔烃.

本文引用格式

彭丽芬 , 彭超 , 汪明 , 唐子龙 , 焦银春 , 许新华 . 膦酰保护基促进选择性Hay偶联制备非对称1,3-二炔[J]. 有机化学, 2018 , 38(11) : 3048 -3055 . DOI: 10.6023/cjoc201805009

Abstract

A selective Hay coupling reaction of aromatic terminal acetylenes and monophosphoryl-protected diynes was developed. The polarity of Ph2P(O) realized facile isolation of the desired unsymmetrical 1,3-diynes from by-products. The low reactivity of monophosphoryl-protected diynes reduced the oxidative homocoupling of itself and enhanced the yields of desired products. A number of aromatic terminal acetylenes and monophosphoryl-protected diynes were tolerated in this reaction, and all the corresponding unsymmetrical 1,3-diynes could be obtained in moderate to good yields. The unsymmetrical 1,3-diynes could be applied to synthesize unsymmetrical yne-diynes and cyclic polyynes.

参考文献

[1] Stang, P. J.; Diederich, F. Modern Acetylene Chemistry, VCH, Weinheim, 1995.
[2] Shi, W.; Lei, A.-W. Tetrahedron Lett. 2014, 55, 2763.
[3] (a) Ito, A.; Cui, B.; Chavez, D.; Chai, H. B.; Shin,Y. G.; Kawanishi, K.; Kardono, L. B.; Riswan, S.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2001, 64, 246.
(b) Evano, G.; Blanchard, N. Copper-Mediated Cross-Coupling Reactions, John Wiley & Sons, Inc., Hoboken, NJ, 2014.
(c) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39, 2632.
[4] Guo, L.; Song, L.; Wang, Z.; Zhao, W.; Mao, W.; Yin, M. Chem. Biol. Interact. 2009, 181, 138.
[5] (a) Katano, M.; Yamamoto, H.; Matsunaga, H.; Mori, M.; Takata, K.; Nakamura, M. Gan to Kagaku Ryoho 1990, 17, 1045.
(b) Matsunaga, H.; Saita, T.; Naguo, F.; Mori, M.; Katano, M. Cancer Chemother. Pharmacol. 1995, 35, 291.
[6] (a) Yadav, J. S.; Kumaraswamy, B.; Sathish Reddy, A.; Srihari, P.; Janakiram, R. V.; Kalivendi, S. V. J. Org. Chem. 2011, 76, 2568.
(b) Srihari, P.; Sathish Reddy, A.; Deepthi, Y.; Kalivendi, S. Tetrahedron Lett. 2013, 54, 5616.
[7] Gangadhar, P.; Reddy, S. A.; Srihari, P. Tetrahedron 2016, 72, 5807.
[8] (a) Fang, J.-K.; Sun, T.-X.; Tian, Y.; Zhang, Y.-J.; Jin, C.-F.; Xu, Z.-M.; Hu, X.-Y.; Wang, H.-B. Mater. Chem. Phys. 2017, 195, 1.
(b) Peng, L.-F.; Wang, B.-H.; Wang, M.; Tang, Z.-L.; Jiang, Y.-Z.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 235.
(c) Peng, L.-F.; Lei, J.-Y.; Wu, L.; Tang, Z.-L.; Luo, Z.-P.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 271.
[9] Pati, A. K.; Mohapatra, M.; Ghosh, P.; Gharpure, S. J.; Mishra, A. K. J. Phys. Chem. A 2013, 117, 6548.
[10] (a) Wan,W. B.; Brand, S. C.; Pak, J. J.; Haley, M. M. Chem.-Eur. J. 2005, 6, 2044.
(b) Peng, L.-F.; Jiang, J.; Peng, C.; Dai, N.-N.; Tang, Z.-L.; Jiao, Y.-C.; Chen, J.-Y.; Xu, X.-H. Chin. J. Org. Chem. 2017, 37, 3013(in Chinese). (彭丽芬, 蒋娟, 彭超, 代宁宁, 唐子龙, 焦银春, 陈锦杨, 许新华, 有机化学, 2017, 37, 3013.)
(c) Peng, L.-F.; Zhang, S.-W.; Wang, B.-H.; Xun, M.-S.; Tang, Z.-L.; Jiao, Y.-C.; Xu, X.-H. Chin. J. Org. Chem. 2018, 38, 519(in Chinese). (彭丽芬, 张思维, 王丙昊, 寻梦硕, 唐子龙, 焦银春, 许新华, 有机化学, 2018, 38, 519.)
[11] (a) Li, Y.-N.; Wang, J.-L.; He, L.-N. Tetrahedron Lett. 2011, 52, 3485.
(b) Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Gayathri, K. U.; Prasad, A. R. Tetrahedron Lett. 2003, 44, 6493.
[12] (a) Hay, A. J. Org. Chem. 1960, 25, 1275.
(b) Abe, H.; Kurokawa, H.; Chida, Y.; Inouye, M. J. Org. Chem. 2011, 76, 309.
[13] (a) Hay, A. S. J. Org. Chem. 1962, 27, 3320.
(b) Montierth, J. M.; DeMario, D. R.; Kurth, M. J.; Schore, N. E. Tetrahedron 1998, 54, 11741.
[14] (a) Bandyopadhyay, A.; Varghese, B.; Sankararaman, S. J. Org. Chem. 2006, 71, 4544.
(b) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.
[15] (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
(b) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632.
(c) Stefani, H. A.; Guarezemini, A. S.; Cella, R. Tetrahedron 2010, 66, 7871.
(d) Jia, X.; Yin, K.; Li, C.; Li, J.; Bian, H. Green Chem. 2011, 13, 2175.
(e) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2008, 47, 2407.
(f) Crowley, J. D.; Goldup, S. M.; Gowans, N. D.; Leigh, D. A.; Ronaldson, V. E.; Slawin, A. M. Z. J. Am. Chem. Soc. 2010, 132, 6243.
(g) Gao, H.-Y.; Wagner, H.; Zhong, D.; Franke, J.-H.; Studer, A.; Fuchs, H. Angew. Chem., Int. Ed. 2013, 52, 4024.
(h) Zhang, S.; Liu, X.; Wang, T. Adv. Synth. Catal. 2011, 353, 1463.
(i) Balamurugan, R.; Naveen, N.; Manojveer, S.; Nama, M. V. Aust. J. Chem. 2011, 64, 567.
(j) Wong, W.-Y.; Lu, G.-L.; Choi, K.-H.; Guo, Y.-H. J. Organomet. Chem. 2005, 690, 177.
(k) Navale, B. S.; Bhat, R. G. RSC Adv. 2013, 3, 5220.
(l) Liu, Y.; Wang, C.; Wang, X.; Wan, J.-P. Tetrahedron Lett. 2013, 54, 3953.
[16] (a) Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org. Lett. 2009, 11, 709.
(b) Suarez, J. R.; Collado-Sanz, D.; Cardenas, D. J.; Chiara, J. L. J. Org. Chem. 2015, 80, 1098.
(c) Balaraman, K.; Kesavan, V. Synthesis 2010, 3461.
(d) Lampkowski, J. S.; Durham, C. E.; Padilla, M. S.; Young, D. D. Org. Biomol. Chem. 2015, 13, 424.
[17] (a) Cadiot, P.; Chodkiewicz, W. Chemistry of Acetylenes, Marcel Dekker, New York, 1969.
(b) Sindhu, K. S.; Thankachan, A. P.; Sajitha, P. S.; Anilkumar, G. Org. Biomol. Chem. 2015, 13, 6891.
(c) Yu, M.; Pan, D.; Jia, W.; Chen, W.; Jiao, N. Tetrahedron Lett. 2010, 51, 1287.
[18] (a) Peng, H.-H.; Xi, Y.-M.; Ronaghi, N.; Dong, B.-L.; Akhmedov, N. G.; Shi, X.-D. J. Am. Chem. Soc. 2014, 136, 13174.
(b) Vilhanová, B.; Václavík, J.; Artiglia, L.; Ranocchiari, M.; Togni, A.; Bokhoven, J. A. ACS Catal. 2017, 7, 3414.
[19] Lampkowski, J. S.; Uthappa, D. M.; Halonski, J. F.; Maza, J. C.; Young, D. D. J. Org. Chem. 2016, 81, 12520.
[20] Su, L.-B.; Dong, J.-Y.; Liu, L.; Sun, M.-L.; Qiu, R.-H.; Zhou, Y.-B.; Yin, S.-F. J. Am. Chem. Soc. 2016, 138, 12348.
[21] Wan, J.-P.; Cao, S.; Jing, Y.-F. Appl. Organomet. Chem. 2014, 28, 631.
[22] Yang, X.; Matsuo, D.; Suzuma, Y.; Fang, J.-K.; Xu, F.; Orita, A.; Otera, J. Synlett 2011, 2402.
[23] Peng, L.-F.; Xu, F.; Suzuma, Y.; Orita, A.; Otera, J. J. Org. Chem. 2013, 78, 12802.
[24] Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Chem. Lett. 2014, 43, 1610.
[25] Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Org. Chem. Front. 2015, 2, 248.

文章导航

/