综述与进展

3,4-桥环吲哚类生物碱的合成进展

  • 袁括 ,
  • 贾彦兴
展开
  • 北京大学药学院 天然产物及仿生药物国家重点实验室 北京 100191

收稿日期: 2018-05-31

  修回日期: 2018-06-25

  网络出版日期: 2018-07-05

基金资助

国家自然科学基金(Nos.21572008,21372017)资助项目.

Recent Progress in the Synthesis of 3,4-Fused Indole Alkaloids

  • Yuan Kuo ,
  • Jia Yanxing
Expand
  • State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing 100191

Received date: 2018-05-31

  Revised date: 2018-06-25

  Online published: 2018-07-05

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572008, 21372017).

摘要

3,4-桥环吲哚类生物碱是吲哚类生物碱中非常重要的一类分子,由于独特的结构和良好的生物活性,其合成吸引了有机合成化学家的广泛兴趣.以3,4-桥环构筑位点作为分类方式概述了近年来该类天然产物的合成进展.

本文引用格式

袁括 , 贾彦兴 . 3,4-桥环吲哚类生物碱的合成进展[J]. 有机化学, 2018 , 38(9) : 2386 -2399 . DOI: 10.6023/cjoc201705058

Abstract

3,4-Fused indole alkaloids are an important part of naturally occurring indole alkaloids and have attracted considerable interests from synthetic chemists because of their unique structures and various biological activities. In this review, the recent total syntheses of the 3,4-fused indole alkaloids from 2013 are summerized and classified by the ring-closing positions of the indole 3,4-fused ring.

参考文献

[1] Sinz, A. Pharm. Unserer Zeit 2008, 37, 306.
[2] Kamigauchi, T.; Yasui, M. WO 2000059909, 2000.
[3] Riley, R. T.; Goeger, D. E.; Yoo, H.; Showker, J. L. Toxicol. Appl. Pharmacol. 1992, 114, 261.
[4] Moncoq, K.; Trieber, C. A.; Young, H. S. J. Biol. Chem. 2007, 282, 9748.
[5] Hymery, N.; Masson, F.; Barbier, G.; Coton, E. Toxicol. In Vitro 2014, 28, 940.
[6] Shan, D.; Jia, Y. Chin. J. Org. Chem. 2013, 33, 1144(in Chinese). (单冬, 贾彦兴, 有机化学, 2013, 33, 1144.)
[7] McCabe, S. R.; Wipf, P. Org. Biomol. Chem. 2016, 14, 5894.
[8] Liu, H.; Jia, Y. Nat. Prod. Rep. 2017, 34, 411.
[9] Zhang, Y. A.; Liu, Q.; Wang, C.; Jia, Y. Org. Lett. 2013, 15, 3662.
[10] Qin, H.; Xu, Z.; Cui, Y.; Jia, Y. Angew. Chem., Int. Ed. 2011, 50, 4447.
[11] Guo, L.; Zhang, F.; Hu, W.; Li, L.; Jia, Y. Chem. Commun. 2014, 50, 3299.
[12] Zhang, F.; Guo, L.; Hu, W.; Jia, Y. Tetrahedron 2015, 71, 3756.
[13] Liang, K.; Yang, J.; Tong, X.; Shang, W.; Pan, Z.; Xia, C. Org. Lett. 2016, 18, 1474.
[14] Wang, W.; Lu, J. T.; Zhang, H.; Shi, Z.; Wen, J.; Cao, X. J. Org. Chem. 2014, 79, 122.
[15] Netz, N.; Opatz, T. J. Org. Chem. 2016, 81, 1723.
[16] Chen, J.; Song, L.; Li, F.; Shi, Z.; Cao, X. Chem. Commun. 2017, 53, 12902.
[17] Chaudhuri, S.; Ghosh, S.; Bhunia, S.; Bisai, A. Chem. Commun. 2018, 54, 940.
[18] Lu, Z.; Yang, M.; Chen, P.; Xiong, X.; Li, A. Angew. Chem., Int. Ed. 2014, 53, 13840.
[19] Baran, P.; Maimone, T.; Richter, J. Nature 2007446, 404.
[20] Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2015, 54, 6878.
[21] Dethe, D. H.; Sau, S. K.; Mahapatra, S. Org. Lett. 2016, 18, 6392.
[22] Dethe, D. H.; Sau, S. K. Org. Lett. 2018, 20, 632.
[23] Lu, Z.; Li, H.; Bian, M.; Li, A. J. Am. Chem. Soc. 2015, 137, 13764.
[24] Zhurakovskyi, O.; Tgrkmen, Y. E.; Löffler, L. E.; Moorthie, V. A.; Chen, C. C.; Shaw, M. A.; Crimmin, M. R.; Ferrara, M.; Ahmad, M.; Ostovar, M.; Matlock, J. V.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2018, 57, 1346.
[25] Lei, T.; Zhang, H.; Yang, Y. R. Tetrahedron Lett. 2015, 56, 5933.
[26] Liang, K.; Wu, T.; Xia, C. Org. Biomol. Chem. 2016, 14, 4690.
[27] Lu, Y.; Yuan, H.; Zhou, S.; Luo, T. Org. Lett. 2017, 19, 620.
[28] Liu, Q.; Li, Q. J.; Ma, Y. F.; Jia, Y. Org. Lett. 2013, 15, 4528.
[29] Lv, J.; Wang, B.; Yuan, K.; Wang, Y.; Jia, Y. Org. Lett. 2017, 19, 3664.
[30] Bhunia, S.; Chaudhuri, S.; Bisai, A. Chem.-Eur. J. 2017, 23, 11234.
[31] Chaudhuri, S.; Bhunia, S.; Roy, A.; Das, M. K.; Bisai, A. Org. Lett. 2018, 20, 288.
[32] Noji, T.; Okano, K.; Tokuyama, H. Tetrahedron 2015, 71, 3833.
[33] Bronner, S. M.; Goetz, A. E.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 3832.
[34] Nathel, N. F.; Shah, T. K.; Bronner, S. M.; Garg, N. K. Chem. Sci. 2014, 5, 2184.
[35] Miura, T.; Funakoshi, Y.; Murakami, M. J. Am. Chem. Soc. 2014, 136, 2272.
[36] Tao, P.; Jia, Y. Chem. Commun. 2014, 50, 7367.
[37] Zhang, X.; Li, Y.; Shi, H.; Zhang, L.; Zhang, S.; Xu, X.; Liu, Q. Chem. Commun. 2014, 50, 7306.
[38] Zhou, B.; Yang, Y.; Tang, H.; Du, J.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 3900.
[39] Suzuki, Y.; Tanaka, Y.; Nakano, S.; Dodo, K.; Yoda, N.; Shinohara, K.; Kita, K.; Kaneda, A.; Sodeoka, M.; Hamada, Y.; Nemoto, T. Chemistry 2016, 22, 4418.
[40] Suetsugu, S.; Nishiguchi, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2014, 16, 996.
[41] Park, J.; Kim, D. H.; Das, T.; Cho, C. G. Org. Lett. 2016, 18, 5098.
[42] Yuan, H.; Guo, Z.; Luo, T. Org. Lett. 2017, 19, 624.
[43] Liu, H.; Zhang, X.; Shan, D.; Pitchakuntla, M.; Ma, Y.; Jia, Y. Org. Lett. 2017, 19, 3323.
[44] Zhang, Y.; Hubbard, J. W.; Akhmedov, N. G.; Petersen, J. L.; Söderberg, B. C. J. Org. Chem. 2015, 80, 4783.
[45] Zhang, Y.; McArdle, I. W.; Hubbard, J. W.; Akhmedov, N. G.; Söderberg, B. C. G. Tetrahedron Lett. 2016, 57, 2865.
[46] Tao, P.; Jia, Y. Chem. Commun. 2014, 50, 7367.
[47] Tao, P.; Chen, Z.; Jia, Y. Chem. Commun. 2016, 52, 11300.
[48] McCabe, S. R.; Wipf, P. Angew. Chem., Int. Ed. 2017, 56, 324.
[49] Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Chem. Rev. 2018, 118, 3752.

文章导航

/