杨梅状单分散微球负载Pd纳米颗粒用于室温下Suzuki偶联反应
收稿日期: 2018-03-17
修回日期: 2018-06-08
网络出版日期: 2018-07-16
基金资助
全国大学创新创业训练计划基金(No.201710638031)、西华师范大学科研启动基金(No.17C038)及西华师范大学英才基金(No.17Y031)资助项目.
A Red Bayberry Shape Monodisperse Microsphere Support Pd Nanoparticles for Suzuki-Miyaura Cross-Coupling Reaction at Room Temperature
Received date: 2018-03-17
Revised date: 2018-06-08
Online published: 2018-07-16
Supported by
Project supported by the National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201710638031), the Fundamental Research Funds of China West Normal University (No. 17C038) and the Meritocracy Research Funds of China West Normal University (No. 17Y031).
合成了一种具有均匀孔径(6 nm)的杨梅状超交联纳米微球,并负载Pd制备了HCP-(PS-DVB)-Pd(0)纳米颗粒催化剂,同时对其物理化学性质进行了X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸脱附测试等表征.活性测试结果表明该催化剂在室温下能够高效催化溴苯的Suzuki偶联反应,同时具有优秀的循环性能,重复10次反应后催化剂的活性仍能达到95%以上.循环后催化剂的比表面积保持在480.5 m2·g-1,表明了该微球的结构稳定性,展示了催化剂HCP-(PS-DVB)-Pd(0)在化学合成和工业化中良好的应用前景.
关键词: 超交联PS-DVB; 单分散微球; 钯纳米催化剂; Suzuki偶联反应
付玉芳 , 邹志娟 , 唐成 , 宋昆鹏 . 杨梅状单分散微球负载Pd纳米颗粒用于室温下Suzuki偶联反应[J]. 有机化学, 2018 , 38(11) : 3106 -3111 . DOI: 10.6023/cjoc201803027
In this study, a controlled synthesis of hyper-crosslinked monodisperse microsphere with homogeneous mesoporous aperture about 6 nm is presented. After supported with palladium, the catalyst was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption and desorption surface area analyses. The results showed that HCP-(PS-DVB)-Pd(0) possessed high catalytic activity for Suzuki-Miyaura cross-coupling reaction at room temperature, and the catalyst also show excellent reusability. After recycled for 10 times, the yield can maintain above 95% and the surface areas can still reach 480.5 m2·g-1. These results suggest that the HCP-(PS-DVB)-Pd(0) catalyst has potential applications in synthetic and industrial chemistry.
[1] Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302.
[2] Zhou, Z.; Zhang, Y.; Xia, W.; Chen, H.; Liang, H.; He, X.; Yu, S.; Cao, R.; Qiu, L. Asian J. Org. Chem. 2016, 5, 1260.
[3] Rathi, A. K.; Gawande, M. B.; Pechousek, J.; Tucek, J.; Aparicio, C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma, R. S.; Zboril, R. Green Chem. 2016, 18, 2363.
[4] Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.-M.; Polshettiwar, V. Chem. Soc. Rev. 2011, 40, 5181.
[5] Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
[6] Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270.
[7] Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314.
[8] Iwai, T.; Tanaka, R.; Harada, T.; Sawamura, M. Chem.-Eur. J. 2014, 20, 1057.
[9] Yamamoto, S. I.; Kinoshita, H.; Hashimoto, H.; Nishina, Y. Nanoscale 2014, 6, 6501.
[10] Boruah, P. R.; Ali, A. A.; Saikia, B.; Sarma, D. Green Chem. 2015, 17, 1442.
[11] Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B. M. Green Chem. 2016, 18, 5890.
[12] Song, K.; Liu, P.; Wang, J.; Tan, B.; Li, T. J. Porous Mater. 2016, 23, 725.
[13] Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Adv. Mater. 2012, 24, 3390.
[14] Song, K.; Liu, P.; Wang, J.; Pang, L.; Chen, J.; Hussain, I.; Tan, B.; Li, T. Dalton Trans. 2015, 44, 13906.
[15] Yu, L.; Huang, Y.; Wei, Z.; Ding, Y.; Su, C.; Xu, Q. J. Org. Chem. 2015, 80, 8677.
[16] Liu, Y.; Tang, D.; Cao, K.; Yu, L.; Han, J.; Xu, Q. J. Catal. 2018, 360, 250.
[17] Wang, Q.; Jing, X.; Han, J.; Yu, L.; Xu, Q. Mater. Lett. 2018, 215, 65.
[18] Yu, L.; Han, Z. Mater. Lett. 2016, 184, 312.
[19] Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Soc. Rev. 2015, 44, 6018.
[20] Zhou, H.; Wu, C.; Wu, Q.; Guo, B.; Liu, W.; Li, G.; Su, Q.; Mu, Y. Polym. Chem. 2017, 8, 1488.
[21] Wang, C.-A.; Li, Y.-W.; Hou, X.-M.; Han, Y.-F.; Nie, K.; Zhang, J.-P. ChemistrySelect 2016, 1, 1371.
[22] Cheng, T.; Zhijuan, Z.; Yufang, F.; Kunpeng, S. ChemistrySelect 2018, 3, 5987.
[23] Carson, F.; Pascanu, V. A.; Gómez, B.; Zhang , Y.; Platero-Prats, A. E.; Zou, X.; Martín-Matute, B. Chem.-Eur. J. 2015, 21, 10896.
[24] Pascanu, V.; Hansen, P. R.; Bermejo Gómez, A.; Ayats, C.; Platero-Prats, A. E.; Johansson, M. J.; Pericàs, M. À.; Martín-Matute, B. ChemSusChem 2015, 8, 123.
[25] Kong, S. N.; Malik, A. U.; Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 432(in Chinese). (孔胜男, Abaid Ullah Malik, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 432.)
[26] Tan, L.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322.
[27] Wang, S.; Song, K.; Zhang, C.; Shu, Y.; Li, T.; Tan, B. J. Mater. Chem. A 2017, 5, 1509.
[28] Xu, S.; Song, K.; Li, T.; Tan, B. J. Mater. Chem. A 2015, 3, 1272.
[29] Massaro, M.; Riela, S.; Lazzara, G.; Gruttadauria, M.; Milioto, S.; Noto, R. Appl. Organomet. Chem. 2014, 28, 234.
[30] Wang, S.; Zhang, C.; Shu, Y.; Jiang, S.; Xia, Q.; Chen, L.; Jin, S.; Hussain, I.; Cooper, A. I.; Tan, B. Sci. Adv. 2017, 3.
[31] Huang, Y.; Yang, L.; Huang, M.; Wang, J.; Xu, L.; Li, W.; Zhou, H.; Sun, X.; Xing, H.; Liu, H. Particuology 2015, 22, 128.
[32] Li, B.; Yang, X.; Xia, L.; Majeed, M. I.; Tan, B. Sci. Rep. 2013, 3, 2128.
[33] Li, L.; Cui, C.; Su, W.; Wang, Y.; Wang, R. Nano Res. 2016, 9, 779.
[34] Yang, X.; Song, K.; Tan, L.; Hussain, I.; Li, T.; Tan, B. Macromol. Chem. Phys. 2014, 215, 1257.
[35] Sun, Y.; Zhao, J.; Wang, J.; Tang, N.; Zhao, R.; Zhang, D.; Guan, T.; Li, K. J. Phys. Chem. C 2017, 121, 10000.
[36] Feng, Z.; Wei, W.; Wang, L.; Hong, R. RSC Adv. 2015, 5, 96911.
[37] Ozer, O.; Ince, A.; Karagoz, B.; Bicak, N. Desalination 2013, 309, 141.
[38] Chen, X.; Cheng, Y.; Seo, C. Y.; Schwank, J. W.; McCabe, R. W. Appl. Catal. B 2015, 163, 499.
[39] He, Y.; Liang, L.; Liu, Y.; Feng, J.; Ma, C.; Li, D. J. Catal. 2014, 309, 166.
/
〈 |
|
〉 |