β-环糊精修饰的金纳米粒子:催化应用及分子选择性
收稿日期: 2018-03-25
修回日期: 2018-07-03
网络出版日期: 2018-07-24
基金资助
上海市教育委员会(高原学科建设项目)、国家自然科学基金(Nos.21601125,21174081)、上海市自然科学基金(No.16ZR1435700)、上海市教育委员会双光学者(No.16SG49)、曙光学者项目及上海工业学院启动资金(No.YJ-201610)资助项目.
β-Cyclodextrin Modified Gold Nanoparticles: Catalytic Applications and Molecular Selectivity
Received date: 2018-03-25
Revised date: 2018-07-03
Online published: 2018-07-24
Supported by
Project supported by the Shanghai Municipal Education Commission (Plateau Discipline Construction Program), the National Science Foundation of China (Nos. 21601125, 21174081), the Natural Science Foundation of Shanghai City (No. 16ZR1435700), the Shuguang Scholar of Shanghai Municipal Education Commission (No. 16SG49), the Shuguang Scholar Project and Start-up Funding of Shanghai Institute of Technology (No. YJ-201610).
张薇 , 邓维 . β-环糊精修饰的金纳米粒子:催化应用及分子选择性[J]. 有机化学, 2018 , 38(11) : 3002 -3008 . DOI: 10.6023/cjoc201803038
L-Cys-β-CD@AuNPs nanoparticles were synthesized by a simple method of the reduction of HAuCl4 with NaBH4and L-Cys-CD. The catalytic activity of L-Cys-β-CD@AuNPs nanoparticles for the catalytic reductions of 4-nitrophenol and 4-nitro-1-naphthol was researched in detail. Because of the selective binding of β-cyclodextrin (β-CD) to different guest molecules, L-Cys-β-CD@AuNPs exhibits diverse catalytic activities for different substrates. The experimental results prove that L-Cys-β-CD@AuNPs shows better catalytic efficiency for the reduction of 4-nitro-1-naphthol than p-nitrophenol.
[1] Ran, X.; Yang, L.; Qu, Q.; Li, S.-L.; Chen, Y.; Zuo, L.-M. RSC Adv. 2017, 7, 1947.
[2] Liu, Y., Xiang, M.-H., Hong, L. RSC Adv. 2017, 7, 6467.
[3] Hapiot, F.; Menuel, S.; Ferreira, M.; Leger, B.; Bricout, H.; Tilloy, S.; Monflier, E. ACS Sustainable Chem. Eng. 2017, 5, 3598.
[4] Wen, D.; Liu W.; Haubold, D.; Zhu, C.; Oschatz, M.; Holzschuh, M.; Wolf, A.; Simon, F.; Kaskel, S.; Eychmuller, A. ACS Nano 2016, 10, 2559.
[5] Putta, C.; Sharavath, V.; Sarkar, S.; Ghosh, S. RSC Adv. 2015, 5, 6652.
[6] Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953,
[7] Zhao, Y.; Huang, Y.-C.; Zhu, H.; Zhu, Q.-Q.; Xia, Y.-S. J. Am. Chem. Soc. 2016, 138, 16645.
[8] Ye, W.-C.; Yu, J.; Zhou, Y.-X.; Gao, D.-Q.; Wang, D.-A.; Wang, C.-M.; Xue, D.-S. Appl. Catal. B:Environ. 2016, 181, 371.
[9] Noh, J. H.; Patala, R.; Meijboom, R. Appl. Catal. A:Gen. 2016, 514, 253.
[10] Chevry, M.; Vanbesien, T.; Menuel, S.; Monflier, E.; Hapiot, F Premkumar, T.; Geckeler, K. E. Catal. Sci. Technol. 2017, 7, 114.
[11] Ping, Y.; Wu, D.-C.; Kumar, J. N.; Cheng, W.-R.; Lay, C. L.; Liu, Y. Biomacromolecules 2013, 14, 2083.
[12] Chen, L.; Zhu, X.-Y.; Yan, D.-Y.; Chen, Y.; Chen, Q.; Yao, Y.-F. Angew. Chem., Int. Ed. 2006, 118, 93.
[13] Wang, J.; Wang, X.-C.; Zhang, X.-T. J. Mater. Chem. A 2016, 5, 4308.
[14] Qi, L.; Tian, H.-H.; Shao, H.-B.; Yu, H.-Z. J. Phys. Chem. C 2017, 121, 7985.
[15] Massaro, M.; Colletti, C.-G.; Lazzara, G.; Guernelli, S.; Noto, R.; Riela, S. ACS Sustainable Chem. Eng. 2017, 5, 3346.
[16] Zou, H. X.; Sun, H. C.; Wang, L.; Zhao, L. L.; Li, J. X.; Dong, Z. Y.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Soft Matter 2016 12, 1192.
[17] Yao, N.; Lin, W.-J.; Zhang, X.-F.; Gu, H.-W.; Zhang, L.-J. J. Polym. Sci. Polym. 2016, 54, 186.
[18] Wang, M.-L.; Fang, G.-D.; Liu, P.; Zhou, D.-M.; Ma, C.; Zhang, D.-J. Zhan, J.-H. Appl. Catal., B 2016, 188, 113.
[19] Wang, F.; Pu, H.-T.; Che, X. Chem. Commun. 2016, 52, 3516.
[20] Sagir, H.; Rahila Rai, P.; Singh, P. K.; Siddiqui, I. R. New J. Chem. 2016, 40, 6819.
[21] Jia, F.; Yang, X.-D.; Li, Z.-Y. RSC Adv. 2016, 6, 92723.
[22] Iwaso, K.; Takashima, Y.; Harada, A. Nat. Chem. 2016, 8, 626.
[23] Li, H.-Y.; Meng, B.; Chai, S.-H.; Liu, H.-L.; Dai, S. Chem. Sci. 2016, 7, 905.
[24] Mathew, A.; Natarajan, G.; Lehtovaara, L.; Hakkinen, H.; Kumar, R. M.; Subramanian, V.; Jaleel, A.; Pradeep, T. ACS Nano 2014, 1, 139.
[25] Wen, X.; Qiao, X.-L.; Han, X.; Niu, L. B.; Huo, L.; Bai, G.-Y. J. Mater. Sci. 2015, 51, 3170.
[26] Wen, D.; Liu, W.; Herrmann, A. K.; Haubold, D.; Holzschuh, M.; Simon, F.; Eychmuller, A. Small 2016, 12, 2439.
[27] Daneshvar, L.; Rounaghi, G. H. J. Electrochem. Soc. 2017, 164, 177.
[28] Jia, H.; Schmitz, D.; Ott, A.; Pich, A.; Lu, Y. J. Mater. Chem. A 2015, 3, 6187.
[29] Padilla, M.; Peccati, F.; Bourdelande, J. L.; Solans-Monfort, X.; Guirado, G.; Sodupe, M.; Hernando, J. Chem. Commun. 2017, 53, 2126.
[30] Luo, C. H.; Dong, Q. J.; Qian, M. J.; Zhang, H. Chem. Phys. Lett. 2016, 664, 89.
[31] Zhao, M.-X.; Zhao, M.; Zeng, E.-Z.; Li, Y.; Li, J.-M.; Cao, Q.; Tan, C.-P.; Ji, L.-N.; Mao, Z.-W. J. Inorg. Biochem. 2014, 137, 31.
[32] Zhao, M.-X.; Li, J.-M.; Du, L.-Y.; Tan, C.-P.; Xia, Q.; Mao, Z.-W.; Ji, L.-N. Chem.-Eur. J. 2011, 17, 5171.
/
〈 |
|
〉 |