研究论文

β-环糊精修饰的金纳米粒子:催化应用及分子选择性

  • 张薇 ,
  • 邓维
展开
  • a 上海大学材料科学与工程学院 上海 200444;
    b 上海应用技术大学化学与环境工程学院 上海 201418

收稿日期: 2018-03-25

  修回日期: 2018-07-03

  网络出版日期: 2018-07-24

基金资助

上海市教育委员会(高原学科建设项目)、国家自然科学基金(Nos.21601125,21174081)、上海市自然科学基金(No.16ZR1435700)、上海市教育委员会双光学者(No.16SG49)、曙光学者项目及上海工业学院启动资金(No.YJ-201610)资助项目.

β-Cyclodextrin Modified Gold Nanoparticles: Catalytic Applications and Molecular Selectivity

  • Zhang Wei ,
  • Deng Wei
Expand
  • a School of Materials Science and Engineering, Shanghai University, Shanghai 200444;
    b School of Chemical and Engineering, Shanghai Institute of Technology, Shanghai 201418

Received date: 2018-03-25

  Revised date: 2018-07-03

  Online published: 2018-07-24

Supported by

Project supported by the Shanghai Municipal Education Commission (Plateau Discipline Construction Program), the National Science Foundation of China (Nos. 21601125, 21174081), the Natural Science Foundation of Shanghai City (No. 16ZR1435700), the Shuguang Scholar of Shanghai Municipal Education Commission (No. 16SG49), the Shuguang Scholar Project and Start-up Funding of Shanghai Institute of Technology (No. YJ-201610).

摘要

利用NaBH4L-半胱氨酸(L-Cys),采用一种简单的还原方法合成了L-Cys-β-CD@AuNPs纳米粒子.研究了L-Cys-β-CD@AuNPs对4-硝基苯酚和4-硝基-1-萘酚的还原催化活性,结果表明:L-Cys-β-CD@AuNPs纳米粒子对4-硝基苯酚和4-硝基-1-萘酚的还原活性不同,由于β-环糊精(β-CD)与不同客体分子的选择性结合,对不同底物具有不同的催化活性.实验结果表明,L-Cys-β-CD@AuNPs对4-硝基-1-萘酚的还原反应效率优于对硝基苯酚.

本文引用格式

张薇 , 邓维 . β-环糊精修饰的金纳米粒子:催化应用及分子选择性[J]. 有机化学, 2018 , 38(11) : 3002 -3008 . DOI: 10.6023/cjoc201803038

Abstract

L-Cys-β-CD@AuNPs nanoparticles were synthesized by a simple method of the reduction of HAuCl4 with NaBH4and L-Cys-CD. The catalytic activity of L-Cys-β-CD@AuNPs nanoparticles for the catalytic reductions of 4-nitrophenol and 4-nitro-1-naphthol was researched in detail. Because of the selective binding of β-cyclodextrin (β-CD) to different guest molecules, L-Cys-β-CD@AuNPs exhibits diverse catalytic activities for different substrates. The experimental results prove that L-Cys-β-CD@AuNPs shows better catalytic efficiency for the reduction of 4-nitro-1-naphthol than p-nitrophenol.

参考文献

[1] Ran, X.; Yang, L.; Qu, Q.; Li, S.-L.; Chen, Y.; Zuo, L.-M. RSC Adv. 2017, 7, 1947.
[2] Liu, Y., Xiang, M.-H., Hong, L. RSC Adv. 2017, 7, 6467.
[3] Hapiot, F.; Menuel, S.; Ferreira, M.; Leger, B.; Bricout, H.; Tilloy, S.; Monflier, E. ACS Sustainable Chem. Eng. 2017, 5, 3598.
[4] Wen, D.; Liu W.; Haubold, D.; Zhu, C.; Oschatz, M.; Holzschuh, M.; Wolf, A.; Simon, F.; Kaskel, S.; Eychmuller, A. ACS Nano 2016, 10, 2559.
[5] Putta, C.; Sharavath, V.; Sarkar, S.; Ghosh, S. RSC Adv. 2015, 5, 6652.
[6] Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953,
[7] Zhao, Y.; Huang, Y.-C.; Zhu, H.; Zhu, Q.-Q.; Xia, Y.-S. J. Am. Chem. Soc. 2016, 138, 16645.
[8] Ye, W.-C.; Yu, J.; Zhou, Y.-X.; Gao, D.-Q.; Wang, D.-A.; Wang, C.-M.; Xue, D.-S. Appl. Catal. B:Environ. 2016, 181, 371.
[9] Noh, J. H.; Patala, R.; Meijboom, R. Appl. Catal. A:Gen. 2016, 514, 253.
[10] Chevry, M.; Vanbesien, T.; Menuel, S.; Monflier, E.; Hapiot, F Premkumar, T.; Geckeler, K. E. Catal. Sci. Technol. 2017, 7, 114.
[11] Ping, Y.; Wu, D.-C.; Kumar, J. N.; Cheng, W.-R.; Lay, C. L.; Liu, Y. Biomacromolecules 2013, 14, 2083.
[12] Chen, L.; Zhu, X.-Y.; Yan, D.-Y.; Chen, Y.; Chen, Q.; Yao, Y.-F. Angew. Chem., Int. Ed. 2006, 118, 93.
[13] Wang, J.; Wang, X.-C.; Zhang, X.-T. J. Mater. Chem. A 2016, 5, 4308.
[14] Qi, L.; Tian, H.-H.; Shao, H.-B.; Yu, H.-Z. J. Phys. Chem. C 2017, 121, 7985.
[15] Massaro, M.; Colletti, C.-G.; Lazzara, G.; Guernelli, S.; Noto, R.; Riela, S. ACS Sustainable Chem. Eng. 2017, 5, 3346.
[16] Zou, H. X.; Sun, H. C.; Wang, L.; Zhao, L. L.; Li, J. X.; Dong, Z. Y.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Soft Matter 2016 12, 1192.
[17] Yao, N.; Lin, W.-J.; Zhang, X.-F.; Gu, H.-W.; Zhang, L.-J. J. Polym. Sci. Polym. 2016, 54, 186.
[18] Wang, M.-L.; Fang, G.-D.; Liu, P.; Zhou, D.-M.; Ma, C.; Zhang, D.-J. Zhan, J.-H. Appl. Catal., B 2016, 188, 113.
[19] Wang, F.; Pu, H.-T.; Che, X. Chem. Commun. 2016, 52, 3516.
[20] Sagir, H.; Rahila Rai, P.; Singh, P. K.; Siddiqui, I. R. New J. Chem. 2016, 40, 6819.
[21] Jia, F.; Yang, X.-D.; Li, Z.-Y. RSC Adv. 2016, 6, 92723.
[22] Iwaso, K.; Takashima, Y.; Harada, A. Nat. Chem. 2016, 8, 626.
[23] Li, H.-Y.; Meng, B.; Chai, S.-H.; Liu, H.-L.; Dai, S. Chem. Sci. 2016, 7, 905.
[24] Mathew, A.; Natarajan, G.; Lehtovaara, L.; Hakkinen, H.; Kumar, R. M.; Subramanian, V.; Jaleel, A.; Pradeep, T. ACS Nano 2014, 1, 139.
[25] Wen, X.; Qiao, X.-L.; Han, X.; Niu, L. B.; Huo, L.; Bai, G.-Y. J. Mater. Sci. 2015, 51, 3170.
[26] Wen, D.; Liu, W.; Herrmann, A. K.; Haubold, D.; Holzschuh, M.; Simon, F.; Eychmuller, A. Small 2016, 12, 2439.
[27] Daneshvar, L.; Rounaghi, G. H. J. Electrochem. Soc. 2017, 164, 177.
[28] Jia, H.; Schmitz, D.; Ott, A.; Pich, A.; Lu, Y. J. Mater. Chem. A 2015, 3, 6187.
[29] Padilla, M.; Peccati, F.; Bourdelande, J. L.; Solans-Monfort, X.; Guirado, G.; Sodupe, M.; Hernando, J. Chem. Commun. 2017, 53, 2126.
[30] Luo, C. H.; Dong, Q. J.; Qian, M. J.; Zhang, H. Chem. Phys. Lett. 2016, 664, 89.
[31] Zhao, M.-X.; Zhao, M.; Zeng, E.-Z.; Li, Y.; Li, J.-M.; Cao, Q.; Tan, C.-P.; Ji, L.-N.; Mao, Z.-W. J. Inorg. Biochem. 2014, 137, 31.
[32] Zhao, M.-X.; Li, J.-M.; Du, L.-Y.; Tan, C.-P.; Xia, Q.; Mao, Z.-W.; Ji, L.-N. Chem.-Eur. J. 2011, 17, 5171.

文章导航

/