综述与进展

醛基为受体的氧化自由基加成反应研究进展

  • 孔黎春 ,
  • 周雨露 ,
  • 罗芳 ,
  • 朱钢国
展开
  • 浙江师范大学化学系 先进催化材料教育部重点实验室 金华 321004

收稿日期: 2018-05-31

  修回日期: 2018-06-27

  网络出版日期: 2018-07-24

基金资助

国家自然科学基金(No.21672191)资助项目.

Recent Advances on Oxidative Radical Addition to Aldehydes

  • Kong Lichun ,
  • Zhou Yulu ,
  • Luo Fang ,
  • Zhu Gangguo
Expand
  • Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004

Received date: 2018-05-31

  Revised date: 2018-06-27

  Online published: 2018-07-24

Supported by

Project supported by the National Natural Science Foundation of China (No. 21672191).

摘要

酮是许多天然产物、药物活性分子或新材料的基本结构单元,所以,发展简单、高效的酮合成方法非常重要.近年来,醛基为受体的氧化自由基加成反应得到了较快发展,该反应可以实现从醛到酮的一步转化,为各种酮包括环状酮和开链酮的快速合成提供了新途径.反应经历了烷氧自由基的形式1,2-氢迁移、单电子氧化和脱质子等步骤.主要对这方面的工作进展进行了介绍.

本文引用格式

孔黎春 , 周雨露 , 罗芳 , 朱钢国 . 醛基为受体的氧化自由基加成反应研究进展[J]. 有机化学, 2018 , 38(11) : 2858 -2865 . DOI: 10.6023/cjoc201805061

Abstract

Ketones are ubiquitous chemical entries in natural products, biologically active molecules, and functional materials. As such, developing operationally simple and general methods for the synthesis of these scaffolds is highly desiable. Recently, oxidative radical addition to aldehydes has emerged as a highly efficient strategy for the direct access of ketones. The strategy features a formal 1,2-hydrogen atom transfer of resulting alkoxy radicals, followed by single electron transfer oxidation and deprotonation to give various cyclic or acyclic ketones in promising yields with a broad substrate scope. Recent advances in this area, including both intramolecular and intermolecular versions, are discussed herein.

参考文献

[1] (a) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459.
(b) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
(c) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195.
(d) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
(e) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
(f) Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica 2017, 75, 22(in Chinese). (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
(g) Song, H.; Liu, X.; Qin, Y. Acta Chim. Sinica 2017, 75, 1137(in Chinese). (宋颢, 刘小宇, 秦勇, 化学学报, 2017, 75, 1137.)
(h) Zhao, J.; Duan, X.; Guo, L.-N. Chin. J. Org. Chem. 2017, 37, 2498(in Chinese). (赵景峰, 段新华, 郭丽娜, 有机化学, 2017, 37, 2498.)
(i) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese). (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.)
(j) Yuan, S.; Wang, Y.; Qiu, G.; Liu, J. Chin. J. Org. Chem. 2017, 37, 566(in Chinese). (袁斯甜, 王艳华, 邱观音生, 刘晋彪, 有机化学, 2017, 37, 566.)
[2] (a) Miyabe, H.; Ueda, M.; Naito, T. Synlett 2004, 7, 1140.
(b) Xu, P.; Wang, G.; Zhu, Y.; Li, W.; Cheng, Y.; Li, S.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2939.
[3] (a) Wilsey, S.; Dowd, P.; Houk, K. N. J. Org. Chem. 1999, 64, 8801.
(b) Zhang, J.; Chen, Y. Acta Chim. Sinica 2017, 75, 41(in Chinese). (张晶, 陈以昀, 化学学报, 2017, 75, 41.)
[4] (a) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1989, 111, 2674.
(b) Chang, S.-Y.; Shao, Y.-F.; Chu, S.-F.; Fan, G.-T.; Tsai, Y.-M. Org. Lett. 1999, 1, 945.
[5] Tsang, R.; Fraser-Reid, B. J. Am. Chem. Soc. 1986, 108, 2116.
[6] Kawamoto, T.; Fukuyama, T.; Ryu, I. J. Am. Chem. Soc. 2012, 134, 875.
[7] Pitzer, L.; Sandfort, F.; Strieth-Kalthoff, F.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 13652.
[8] Wang, G.; Cao, J.; Gao, L.; Chen, W.; Huang, W.; Cheng, X.; Li, S. J. Am. Chem. Soc. 2017, 139, 3904.
[9] (a) Gilbert, B. C.; Holmes, R. G. G.; Laue, H. A. H.; Norman, R. O. C. J. Chem. Soc., Perkin Trans. 2 1976, 1047.
(b) Konya, K. G.; Paul, T.; Lin, S.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 2000, 122, 7518.
[10] Che, C.; Huang, Q.; Zheng, H.; Zhu, G. Chem. Sci. 2016, 7, 4134.
[11] Zhang, Y.; Guo, D.; Ye, S.; Liu, Z.; Zhu, G. Org. Lett. 2017, 19, 1302.
[12] (a) Muller, C. K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Chen, P.; Liu, G. Synthesis 2013, 45, 2919.
(d) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(e) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
(f) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(g) Nie, X.; Cheng, C.; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898.
[13] Zhang, Y.; Ye, S.; Ji, M.; Li, L.; Guo, D.; Zhu, G. J. Org. Chem. 2017, 82, 6811.
[14] Zhu, H.; Nie, X.; Huang, Q.; Zhu G. Tetrahedron Lett. 2016, 57, 2331.
[15] Lu, D.; Wan, Y.; Kong, L.; Zhu, G. Org. Lett. 2017, 19, 2929.
[16] Liu, Z.; Bai, Y.; Zhang, J.; Yu, Y.; Tan, Z.; Zhu, G. Chem. Commun. 2017, 53, 6440.
[17] Chen, Y.; Shu, C.; Luo, F.; Xiao, X.; Zhu, G. Chem. Commun. 2018, 54, 5373.
[18] Yang, W.-C.; Dai, P.; Luo, K.; Ji, Y.-G.; Wu, L. Adv. Synth. Catal. 2017, 359, 2390.
[19] (a) Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490.
(b) Fan, X.; Zhao, H.; Yu, J.; Bao, X.; Zhu, C. Org. Chem. Front. 2016, 3, 227.
(c) Wang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Lett. 2015, 17, 4798.
(d) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514.
(e) Ilangovan, A.; Saravanakumar, S.; Malayappasamy, S. Org. Lett. 2013, 15, 4968.
[20] Che, C.; Qian, Z.; Wu, M.; Zhao, Y.; Zhu, G. J. Org. Chem. 2018, 83, 5665.

文章导航

/