氧化锌促进的醛与[Ph3P+CF2H·Br-]的Wittig偕二氟烯基化反应
收稿日期: 2018-06-15
修回日期: 2018-07-06
网络出版日期: 2018-07-24
基金资助
国家重点基础研究发展计划(973计划,No.2015CB931903)、国家自然科学基金(Nos.21421002,21472222,21502214,21672242)、中国科学院(Nos.XDA02020105,XDA02020106)、中国科学院前沿科学重点研究计划(No.QYZDJSSW-SLH049)资助项目.
ZnO-Promoted Wittig gem-Difluoroolefination of Aldehydes with [Ph3P+CF2H·Br-]
Received date: 2018-06-15
Revised date: 2018-07-06
Online published: 2018-07-24
Supported by
Project supported by the National Basic Research Program of China (973 Program, No. 2015CB931903), the National Natural Science Foundation of China (Nos. 21421002, 21472222, 21502214, 21672242), the Chinese Academy of Sciences (Nos. XDA02020105, XDA02020106), and the Key Research Program of Frontier Sciences (CAS) (No. QYZDJSSW-SLH049).
于蛟 , 林锦鸿 , 肖吉昌 . 氧化锌促进的醛与[Ph3P+CF2H·Br-]的Wittig偕二氟烯基化反应[J]. 有机化学, 2019 , 39(1) : 265 -269 . DOI: 10.6023/cjoc201806024
Wittig gem-difluoroolefination of aldehydes with difluoromethyl phosphonium salt (Ph3P+CF2H·Br-) by using zinc oxide as a base is described. Although the proton in the CF2H group is acidic and a base could easily lead to its deprotonation to form ylide (Ph3P+CF2-), the attack of the base at the positive phosphorus atom may also take place to produce a nucleophilic [HCF2-] equivalent, and then nucleophilic difluoromethylation instead of Wittig reaction would occur. The use of ZnO as the base favored the Wittig reaction and the nucleophilic difluoromethylation was not observed. Furthermore, the excessive ZnO and ZnⅡ salts produced from ZnO could be easily removed by filtration, which may be convenient for the purification process.
[1] (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell Publishing, Chichester, 2009.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(d) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[2] (a) McDonald, I. A.; Lacoste, J. M.; Bey, P.; Palfreyman, M. G.; Zreika, M. J. Med. Chem. 1985, 28, 186.
(b) Weintraub, P. M.; Holland, A. K.; Gates, C. A.; Moore, W. R.; Resvick, R. J.; Bey, P.; Peet, N. P. Bioorg. Med. Chem. 2003, 11, 427.
(c) Altenburger, J.-M.; Lassalle, G. Y.; Matrougui, M.; Galtier, D.; Jetha, J.-C.; Bocskei, Z.; Berry, C. N.; Lunven, C.; Lorrain, J.; Herault, J.-P.; Schaeffer, P.; O'Connor, S. E.; Herbert, J.-M. Bioorg. Med. Chem. 2004, 12, 1713.
[3] (a) Nguyen, B. V.; Burton, D. J. J. Org. Chem. 1997, 62, 7758.
(b) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639.
(c) Qiao, Y.; Si, T.; Yang, M.-H.; Altman, R. A. J. Org. Chem. 2014, 79, 7122.
[4] (a) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619.
(b) Burton, D.; Yang, Z.-Y.; Qiu, W. Chem. Rev. 1996, 96, 1641.
(c) Ichikawa, J. J. Fluorine Chem. 2000, 105, 257.
(d) Chelucci, G. Chem. Rev. 2012, 112, 1344.
[5] (a) Mae, M.; Amii, H.; Uneyama, K. Tetrahedron Lett. 2000, 41, 7893.
(b) Amii, H.; Kobayashi, T.; Terasawa, H.; Uneyama, K. Org. Lett. 2001, 3, 3103.
(c) Ichikawa, J.; Ishibashi, Y.; Fukui, H. Tetrahedron Lett. 2003, 44, 707.
(d) Ichikawa, J.; Fukui, H.; Ishibashi, Y. J. Org. Chem. 2003, 68, 7800.
(e) Miura, T.; Ito, Y.; Murakami, M. Chem. Lett. 2008, 37, 1006.
[6] (a) Crowley, P. J.; Howarth, J. A.; Owton, W. M.; Percy, J. M.; Stansfield, K. Tetrahedron Lett. 1996, 37, 5975.
(b) Goegsig, T. M.; Soebjerg, L. S.; Lindhardt, A. T.; Jensen, K. L.; Skrydstrup, T. J. Org. Chem. 2008, 73, 3404.
[7] (a) Prakash, G. K. S.; Wang, Y.; Hu, J.; Olah, G. A. J. Fluorine Chem. 2005, 126, 1361.
(b) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444.
(c) Wang, X.-P.; Lin, J.-H.; Xiao, J.-C.; Zheng, X. Eur. J. Org. Chem. 2014, 928.
(d) Cao, C.-R.; Ou, S.; Jiang, M.; Liu, J.-T. Tetrahedron Lett. 2017, 58, 482.
[8] (a) Edwards, M. L.; Stemerick, D. M.; Jarvi, E. T.; Matthews, D. P.; McCarthy, J. R. Tetrahedron Lett. 1990, 31, 5571.
(b) Piettre, S. R.; Cabanas, L. Tetrahedron Lett. 1996, 37, 5881.
[9] (a) Serafinowski, P. J.; Brown, C. A. Tetrahedron 2000, 56, 333.
(b) Nowak, I.; Robins, M. Org. Lett. 2005, 7, 721.
(c) Thomoson, C. S.; Martinez, H.; Dolbier, W. R., Jr. J. Fluorine Chem. 2013, 150, 53.
(d) Wang, F.; Li, L.; Ni, C.; Hu, J. Beilstein J. Org. Chem. 2014, 10, 344.
[10] (a) Herkes, F.; Burton, D. J. Org. Chem. 1967, 1311.
(b) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.
[11] Li, Q.; Lin, J.-H.; Deng, Z.-Y.; Zheng, J.; Cai, J.; Xiao, J.-C. J. Fluorine Chem. 2014, 163, 38.
[12] (a) Naae, D. G.; Burton, D. J. J. Fluorine Chem. 1971, 1, 123.
(b) Naae, D. G.; Burton, D. J. Synth. Commun. 1973, 3, 197.
[13] Zheng, J.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Chem.-Eur. J. 2013, 19, 15261.
[14] (a) Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015, 51, 8805.
(b) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. Org. Lett. 2015, 17, 532.
(c) Zheng, J.; Lin, J.-H.; Yu, L.-Y.; Wei, Y.; Zheng, X.; Xiao, J.-C. Org. Lett. 2015, 17, 6150.
(d) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2015, 54, 13236.
(e) Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D. H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196.
(f) Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669.
[15] Deng, Z.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Org. Lett. 2016, 18, 3206.
[16] (a) Deng, Z.; Lin, J.-H.; Xiao, J.-C. Nat. Commun. 2016, 7, 10337.
(b) Deng, Z.; Liu, C.; Zeng, X.-L.; Lin, J.-H.; Xiao, J.-C. J. Org. Chem. 2016, 81, 12084.
[17] Nenajdenko, V. G.; Varseev, G. N.; Korotchenko, V. N.; Shastin, A. V.; Balenkova, E. S. J. Fluorine Chem. 2003, 124, 115-118.
[18] Ichitsuka, T.; Takanohashi, T.; Fujita, T.; Ichikawa, J. J. Fluorine Chem. 2015, 170, 29.
/
〈 |
|
〉 |