离子液体的进展——绿色制备及在环境修复中的应用研究
收稿日期: 2018-05-03
修回日期: 2018-06-15
网络出版日期: 2018-08-14
基金资助
河北自然科学基金(No.2015208122)资助项目.
Progress of Ionic Liquids-Green Preparation and Application Research in Environmental Remediation
Received date: 2018-05-03
Revised date: 2018-06-15
Online published: 2018-08-14
Supported by
Project supported by the Natural Science Foundation of Hebei Province (No. 2015208122).
近年来,离子液体由于其独特的性能在实验室和工业领域得到广泛研究,并展示出良好的应用前景.同时,一系列离子液体绿色制备技术被开发设计出来,极大地改变了离子液体的研究面貌.本文综述了离子液体的绿色制备及在环境修复中的应用进展.离子液体的绿色合成主要途径有,原子经济性反应、绿色原材料合成、绿色溶剂合成、化工过程强化技术及计算机辅助设计,表现出合成效率高、产品质量好、废物产生量少、能耗低、合成条件温和等特点.离子液体的绿色制备不仅使离子液体更加丰富多彩,而且使其"从头到脚"成为一种绿色溶剂和绿色功能材料.离子液体在环境修复的典型特点和独特优势表现在:在水体修复方面,具有分离效率高、不产生二次污染、耗材少等特点;在土壤修复中,可以有效削弱污染物质在土壤中的毒性;在大气修复中,在消除污染物的同时,有时可以实现其资源化利用.展望了离子液体在绿色制备和环境修复的未来发展趋势.
刘宝友 , 张佩文 . 离子液体的进展——绿色制备及在环境修复中的应用研究[J]. 有机化学, 2018 , 38(12) : 3176 -3188 . DOI: 10.6023/cjoc201805010
In recent years, ionic liquids have been extensively studied in the laboratory and industrial fields due to their unique properties and have shown good application prospects. At the same time, a series of ionic liquids green preparation technologies have been developed and designed, which has greatly changed the research aspect of ionic liquids. In this paper, the green preparation of ionic liquids and their application in environmental remediation are reviewed. The synthesis processes of ionic liquids, including atoms economic reaction, green raw materials reaction, green solvents reaction, chemical process intensification and computer-aided design are emphasized with reference to their advantages of high synthesis efficiency, good product quality, low waste generation, low energy consumption, mild conditions and etc. Moreover, the green preparation of ionic liquids not only makes the ionic liquid more abundant, but also makes it absolutely a green solvent and green functional material. The typical characteristics that reflect the unique advantages of ionic liquids in environmental restoration are as follows. In terms of water body restoration, it has the characteristics of high separation efficiency, elimination of secondary pollution and less consumables. In the soil remediation, it can effectively reduce the toxicity of pollutants in soil. In the atmospheric remediation, it eliminates pollutants and sometimes achieves the resource utilization. Furthermore, the future development trend of ionic liquids in green preparation and environmental remediation is also prospected.
Key words: ionic liquid; green preparation; environmental remediation; application
[1] Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal., A 2010, 373, 1.
[2] Clark, K. D.; Emaus, M. N.; Varona, M.; Bowers, A. N.; Anderson, J. L. J. Sep. Sci. 2018, 41, 209.
[3] Zhang, X. C.; Zhang, S. J.; Zuo, Y.; Zhao, G. Y.; Zhang, X. P. Prog. Chem. (Beijing, China) 2010, 22, 1499(in Chinese). (张晓春, 张锁江, 左勇, 赵国英, 张香平, 化学进展, 2010, 22, 1499.)
[4] Xie, X. X.; Li, L. H.; Wu, X.; Ma, C.; Zhang, J. S. Heterocycles 2016, 92, 1171.
[5] Liu, B. Y.; Jin, N. X. Curr. Org. Chem. 2016, 20, 2109.
[6] Gong, A.; Gu, S. S.; Wang, J.; Sheng, S.; Wu, F. A. Bioresour. Technol. 2015, 193, 498.
[7] Liu, B. Y.; Han, J.; Dong, J. F.; Wei, F. X.; Cheng, Y. H. Chin. J. Org. Chem. 2007, 27, 1236(in Chinese). (刘宝友, 韩菊, 董建芳, 魏福祥, 程彦海, 有机化学, 2007, 27, 1236.)
[8] Kapoor, U.; Shah, J. K. J. Phys. Chem. B 2018, 122, 213.
[9] Zhang, G. P.; Zhu, H. X.; Chen, M. J.; Li, H. G.; Yuan, Y.; Ma, T. T.; Hao, J. C. Chem.-Eur. J. 2017, 23, 7278.
[10] Wang, Y. L.; Shah, F. U.; Glavatskih, S.; Antzutkin, O. N.; Laaksonen, A. J. Phys. Chem. B 2014, 118, 8711.
[11] Zhang, Y. F.; Lee, H. K. J. Chromatogr. A 2013, 1271, 56.
[12] Wang, S. J.; Liu, J. Z.; Yuan, L. Y.; Cui, Z. P.; Peng, J.; Li, J. Q.; Zhai, M. L.; Liu, W. J. Phys. Chem. Chem. Phys. 2014, 16, 18729.
[13] Lancaster, M. Green Chemistry:An Introductory Text, RSC Publishing, UK, 2010.
[14] Costa, S. P. F.; Azevedo, A. M. O.; Pinto, P. C. A. G.; Saraiva, M. L. M. F. S. ChemSusChem 2017, 10, 2321.
[15] Ma, J. Y.; Hong, X. P. J. Environ. Manage. 2012, 99, 104.
[16] Zhang, X. Z.; Zhao, D. S.; Liu, B. Y. Ionic Liquid-From Theoretical Basis to Research Progress, Chemical Industry Press, Beijing, 2009.
[17] Liu, B. Y.; Xu, D. Q.; Dong, J. F.; Yang, H. L.; Zhao, D. S.; Luo, S. P.; Xu, Z. Y. Synth. Commun. 2007, 37, 3003.
[18] Liu, B. Y.; Wei, F. X.; Zhao, J. J.; Wang, Y. Y. RSC Adv. 2013, 7, 2470.
[19] Liu, B. Y.; Zhao, J. J.; Wei, F. X. J. Mol. Liq. 2013, 180, 19.
[20] Liu, B. Y.; Zhao, J. J.; Wei, F. X. J. Mol. Liq. 2013, 187, 309.
[21] Liu, B. Y.; Liu, Y. R. J. Chem. Thermodyn. 2016, 92, 1.
[22] Liu, B. Y.; Liu, Y. R. Environ. Eng. Sci. 2016, 33, 384.
[23] Kurnia, K. A.; Sintra, T. E.; Danten, Y.; Cabaco, M. L.; Besnard, M.; Coutinho, J. A. P. New J. Chem. 2017, 41, 47.
[24] Wasserscheid, P.; Drieben-Holscher, B.; Hal, R. V.; Steffens, H. C.; Zimmermann, J. Chem. Commun. (Cambridge, U. K.) 2003, 2038.
[25] Gunaratne, H. Q. N.; McCarron, P.; Seddon, K. R. Green Chem. 2017, 19, 614.
[26] Smith, M. B.; March, J. March's Advanced Organic Chemistry, John Wiley & Sons, New York, 2001.
[27] Nawshed, M.; Zakaria, M.; Yasir, A. E.; Azmi, B. M.; Mutalib, M. I. A. J. Chem. Eng. Data 2014, 59, 579.
[28] Tanmoy, P.; Salahuddin, A.; Sreedevi, U. Appl. Catal., A 2015, 506, 228.
[29] Wu, F.; Xiang, J.; Chen, R. J.; Li, L.; Chen, J. Z.; Chen, S. J. Phys. Chem. C 2010, 114, 20007.
[30] Pinkert, A.; Marsh, K. N.; Pang, S. S. Ind. Eng. Chem. Res. 2010, 49, 11809.
[31] Lv, Y. Q.; Guo, Y.; Luo, X. Y.; Li, H. Sci. Sin.:Chim. 2012, 55, 1688(in Chinese). (吕永强, 郭英, 罗晓英, 李灏, 中国科学:化学, 2012, 55, 1688.)
[32] Kirchhec ker, S.; Esposito, D. Curr. Opin. Green Sustainable Chem. 2016, 2, 28.
[33] Kalb, R. S.; Damma, M.; Verevkinbc, S. P. React. Chem. Eng. 2017, 2, 432.
[34] Maton, C.; Hecke, K. V.; Stevens, C. V. New J. Chem. 2015, 39, 461.
[35] Zhang, S. A.; Ma, L.; Wen, P.; Ye, X. Y.; Sun, W. J.; Fan, M. J.; Yang, D. S.; Zhou, F.; Liu, W. M. Tribol. Int. 2018, 121, 435.
[36] Chen, Z. G.; Zong, M. H.; Gu, Z. X. Chin. J. Org. Chem. 2009, 29, 672(in Chinese). (陈志刚, 宗敏华, 顾振新, 有机化学, 2009, 29, 672.)
[37] Fukaya, Y.; Iizuka, Y.; Sekikawa, K.; Ohno, H. Green Chem. 2007, 9, 1155.
[38] Hu. S. Q.; Zhang, X. D.; Xu, M.; Sun, L. Prog. Chem. (Beijing, China) 2011, 23, 731(in Chinese). (胡素琴, 张晓东, 许敏, 孙立, 化学进展, 2011, 23, 731.)
[39] Gouveiaa, W.; Jorgea, T. F.; Martinsa, S.; Meirelesa, M.; Carolinob, M.; Cruzb, C.; Almeida, T. V.; Araujo, M. E. M. Chemosphere 2014, 104, 51.
[40] Hu, S. Q.; Jiang, T.; Zhang, Z. F.; Zhu, A. L.; Han, B. X.; Song, J. L.; Xie, Y.; Li, W. J. Tetrahedron Lett. 2007, 48, 5613.
[41] Zhang, L.; Hong, B. C.; Qin, S.; Tao, G. H. Green Chem. 2015, 17, 5154.
[42] Marco, C.; Andrea, L. D.; Maddalena, D.; Lorenzo, G.; Stefano, L.; Enrico, B.; Francesca, L. J. Phys. Chem. B 2018, 122, 2635.
[43] Javier, G.; Christian, O. G.; Roberto, G. D.; Rafael, M. P. Chem. Eng. Technol. 2017, 40, 2339.
[44] Yusuke, U.; Davood, K.; Nader, M. Energy Fuels 2018, 32, 5345.
[45] Rao, S. S.; Bartolotti, L. J.; Gejji, S. P. Phys. Chem. Chem. Phys. 2017, 19, 29561.
[46] Tao, G.; He, L.; Sun, N.; Kou, Y. Chem. Commun. (Cambridge, U. K.) 2005, 3562.
[47] Zhang, L.; He, L.; Hong, C. B.; Qin, S.; Tao, G. H. Green Chem. 2015, 17, 5154.
[48] Zhang, Z. S.; Kang, N.; Wang, J. Y.; Sui, H.; He, L.; Li, X. G. Chem. Eng. Sci. 2018, 181, 264.
[49] Mjalli, F. S.; Al-Hashid, R.; Al-Muhtaseb, A.; Omar, A.; Mad-dela, N. Asia-Pac. J. Chem. Eng. 2016, 11, 683.
[50] Xu, D. Q.; Liu, B. Y.; Luo, S. P.; Xu, Z. Y.; Shen, Y. C. Synthesis 2003, 17, 2626.
[51] Chiappe, C.; Mezzetta, A.; Pomelli, C. S.; Puccini, M.; Seggiani, M. Org. Process Res. Dev. 2016, 20, 2080.
[52] Zhou, H. C.; Yang, J.; Ye, L. M.; Lin, H. Q.; Yuan, Y. Z. Green Chem. 2010, 12, 661.
[53] Kuruppathparambil, R. R.; Tharun, J.; Dongwoo, K.; Kathalikkattil, A. C.; Dae, W. P. Catal. Sci. Technol. 2014, 4, 963.
[54] Ranjan, P.; Kitawat, B. S.; Singh, M. RSC Adv. 2014, 4, 53634.
[55] Sabbaghan, M.; Shahvelayati, A. S.; Banihashem, S. Ceram. Interfaces 2016, 42, 3820.
[56] Abbott, A. P.; Barron, J. C.; Ryder, K. S.; Wilson, D. Chem.-Eur. J. 2007, 13, 6495.
[57] Xiong, X. Q.; Han, Q.; Shi, L.; Xiao, S. Y.; Bi, C. Chin. J. Org. Chem. 2016, 36, 480(in Chinese). (熊兴泉, 韩骞, 石霖, 肖上运, 毕成, 有机化学, 2016, 36, 480.)
[58] Varma, R. S.; Namboodiri, V. V. Chem. Commun. (Cambridge, U. K.) 2001, 643.
[59] Namboodiri, V. V.; Varma, R. S. Tetrahedron Lett. 2002, 43, 5381.
[60] Deetlefs, M.; Seddon, K. R. Green Chem. 2003, 5, 181.
[61] Horikoshi, S.; Hamamura, T.; Kajitani, M.; Yoshizawafujita, M.; Serpone, N. Org. Process Res. Dev. 2008, 12, 1089.
[62] Zhai, L.; Zhong, Q.; He, C.; Wang, J. J. Hazard. Mater. 2010, 177, 807.
[63] Leveque, J. M.; Luche, J. L.; Petrier, C.; Roux, R.; Bonrath, W. Green Chem. 2002, 4, 357.
[64] Zhao, S. H.; Zhao, E. L.; Shen, P.; Zhao, M.; Sun, J. Ultrason. Sonochem. 2008, 15, 955.
[65] Cravotto, G.; Boffa, L.; Estager, C.; Draye, M.; Bonrath, W. Aust. J. Chem. 2007, 60, 946.
[66] Ciszewski, J. T.; Gonzalez, M. A. 231st ACS National Meeting, Atlanta, 2006, p. 319.
[67] Waterkamp, D. A.; Thöming, J.; Heiland, M.; Sauvageau, J. C.; Schlueter, M.; Beyersdorff, T. Chem. Ing. Tech. 2007, 79, 1482.
[68] Waterkamp, D. A.; Heiland, M.; Schluter, M.; Sauvageau, J. C.; Beyersdorff, T.; Thoming, J. Green Chem. 2007, 9, 1084.
[69] NirvikSena, V.; Kolib, K. K.; Singha, S.; Mukhopadhyaya, K. T.; Shenoy. Chem. Eng. Process. 2017, 121, 180.
[70] Abdelhamid, M. E.; Murdoch, T.; Greaves, T. L.; O'Mullane, A. P.; Snook, G. A. Phys. Chem. Chem. Phys. 2015, 17, 17967.
[71] Greaves, T. L.; Ha, K.; Muir, B. W.; Howard, S. C.; Weerawar-dena, A.; Kirby, N.; Drummond, C. J. Phys. Chem. Chem. Phys. 2015, 17, 2357.
[72] Weis, D. C.; Macfarlane, D. R. Aust. J. Chem. 2012, 65, 1478.
[73] Lee, B. S.; Lin, S. T. Chem. Eng. Sci. 2015, 121, 157.
[74] Peng, D. L.; Zhang, J. N.; Cheng, H. Y.; Chen, L. F.; Qi, Z. W. Chem. Eng. Sci. 2017, 159, 58.
[75] Wei, G. T.; Yang, Z.; Chen, C. J. Anal. Chim. Acta 2003, 488, 183.
[76] Luo, H. M.; Dai, S.; Bonnesen, P. V.; Buchanan, A. C. J. Alloys Compd. 2006, 418, 195.
[77] Mancini, M. V.; Spreti, N.; Di Profio, P.; Germani, R. Sep. Purif. Technol. 2013, 116, 294.
[78] Santhana Krishna Kumar, A.; Rajesh, N. RSC Adv. 2013, 3, 2697.
[79] Elhamifar, D.; Shojaeipoor, F.; Yari, O. RSC Adv. 2016, 6, 58658.
[80] Deng, N.; Li, M.; Zhao, L. J.; Lu, C. F.; De Rooy, S. L.; Isiah, M.; Warne, I. M. J. Hazard. Mater. 2011, 192, 1350.
[81] Lawal, I. A.; Moodley, B. J. Chem. Technol. Biotechnol. 2017, 92, 808.
[82] Marullo, S.; Rizzo, C.; Dintcheva, N. T.; Giannici, F.; D'Anna, F. J. Colloid Interface Sci. 2018, 517, 182.
[83] Huang, H. L.; Wei, Y. J. Chemosphere 2018, 194, 390.
[84] Huang, H. L.; Huang, H. H.; Wei, Y. J. Spectrochim. Acta, Part B 2017, 133, 9.
[85] Soumyadeep, M.; Sumona, M.; Adeeb, H.; Maan, H.; Ali, H. M.; Bhaskar, S. G. J. Contam. Hydrol. 2016, 194, 17.
[86] Soumyadeep, M.; Sumona, M.; Nor Farihah, A.; Adeeb, H.; Maan, H.; Mohd Ali, H.; Bhaskar, S. G. Chem. Eng. J. (Amsterdam, Neth.) 2016, 294, 316.
[87] Liao, C. Y.; Peng, C. Y.; Wang, H. C.; Kang, H. Y.; Wang, H. P. Nucl. Instrum. Methods Phys. Res., Sect. A 2011, 652, 925.
[88] Keskin, S.; Akman, U.; Hortacsu, O. Chem. Eng. Process. 2008, 47, 1693.
[89] Pernak, J.; Syguda, A.; Janiszewska, D.; Materna, K.; Praczyk, T. Tetrahedron 2011, 67, 4838.
[90] Khodadoust, A. P.; Chandrasekaran, S.; Dionysiou, D. D. Environ. Sci. Technol. 2006, 40, 2339.
[91] Bates, E. D.; Mayton, R. D.; Ntai, L.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 926.
[92] Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J. Angew. Chem., Int. Ed. 2004, 43, 2415.
[93] Severa, G.; Head, J.; Bethune, K.; Higgins, S.; Fujise, A. J. Environ. Chem. Eng. 2018, 6, 718.
[94] Zhou, X. M.; Gao, B. B.; Liu, S. Y.; Sun. X. J.; Zhu, X.; Fu, H. J. Mol. Graphics Modell. 2016, 68, 87.
[95] Huang, K.; Zhang, X. M.; Zhou, L. S.; Tao, D. J.; Fan, J. P. Chem. Eng. Sci. 2017, 173, 253.
[96] Wang, Y.; Wang, C. M.; Zhang, L. Q.; Li, H. R. Phys. Chem. Chem. Phys. 2008, 10, 5976.
[97] Wang, W. L.; Ma, X. L.; Grimes, S.; Cai, H. F.; Zhang, M. Chem. Eng. J. (Amsterdam, Neth.) 2017, 328, 353.
[98] Milota, M.; Mosher, P.; Li, K. C. For. Prod. J. 2007, 57, 73.
[99] Delaunay, F.; Rodriguez-Castillo, A. S.; Couvert, A.; Amrane, A.; Biard, P. F.; Szymczyk, A.; Malfreyt, P.; Ghoufi, A. J. Phys. Chem. C 2015, 119, 9966.
[100] Quijano, G.; Couvert, A.; Amrane, A.; Darracq, G.; Couriol, C.; Le Cloirec, P.; Paquin, L.; Carrie, D. Chem. Eng. Sci. 2011, 66, 2707.
[101] Quijano, G.; Couvert, A.; Amrane, A.; Darracq, G.; Couriol, C.; Le Cloirec, P.; Paquin, L.; Carrie, D. Water, Air, Soil Pollut. 2013, 224, 1.
/
〈 |
|
〉 |