光诱导酰基自由基反应的研究进展
收稿日期: 2018-06-07
修回日期: 2018-07-30
网络出版日期: 2018-08-23
基金资助
辽宁省教育厅一般项目基金(No.L2016022)和辽宁石油化工大学引进人才科研启动基金(No.2016XJJ-006)资助项目.
Recent Advances on the Photo-Induced Reactions of Acyl Radical
Received date: 2018-06-07
Revised date: 2018-07-30
Online published: 2018-08-23
Supported by
Project supported by the Fund of Liaoning Provincial Department of Education (No. L2016022) and the Talent Scientific Research Found of Liaoning Shihua University (No. 2016XJJ-006).
阮利衡 , 陈春欣 , 张晓欣 , 孙京 . 光诱导酰基自由基反应的研究进展[J]. 有机化学, 2018 , 38(12) : 3155 -3164 . DOI: 10.6023/cjoc201806009
Recently, the photo-induced radical reactions have emerged as a hot research topic in the field of organic synthetic chemistry. Among these, the radical acylation reaction via photocatalyst is one of the most effecient strategy to prepare ketones under mild conditions. The recent progress on the photo-induced reactions of acyl radical, various acyl radical sources and its application in the organic synthesis is summaried.
Key words: photo-induced; acyl radical; decarboxylation
[1] (a) Smith, M. B.; March, J. March's Advanced Organic Chemistry:Reactions, Mechanisms, and Structure, 6th ed., John Wiley & Sons, Inc., Hoboken, NJ, 2007.
(b) Denisov, E. T.; Afanas'ev, I. B. Oxidation and Antioxidants in Organic Chemistry and Biology, 5th ed., CRC Press, Boca Raton, 2005.
[2] (a) Guyton, A. C.; Hall, J. E. Textbook of Medical Physiology, 11th ed., Philadelphia, PA, Elsevier Saunders, 2005.
(b) Kleemann, A.; Engel, J.; Kutscher, B.; ReicheArt, D. Pharmaceutical Substances:Syntheses, Patents, Applications, 4th ed., Georg Thieme, Stuttgart, 2001.
[3] (a) Tang, M.; Zou, Y.; Watanabe, K. J.; Walsh, C. T.; Tang, Y. Chem. Rev. 2017, 117, 5226.
(b) Liang, Y.-F.; Jiao N. Acc. Chem. Res. 2017, 50, 1640.
(c) Bai, Y.; Davis, D. C.; Dai, M. J. Org. Chem. 2017, 82, 2319.
(d) Huang, Z.; Lim, H. N.; Mo, F. Y.; Dong, G.-B. Chem. Soc. Rev. 2015, 44, 7764.
(e) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.
[4] (a) Yang, Q.; Zhang, L.; Ye, C.; Luo, S.; Wu, L.-Z.; Tung, C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.
(b) Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.
(c) Zhou, Q.; Wei, S.; Han, W. J. Org. Chem. 2014, 79, 1454.
(d) Gu, L.; Liu, J.; Zhang, H. Chin. J. Chem. 2014, 32, 1267.
(e) Li, M.; Wang, C.; Ge, H. Org. Lett. 2011, 13, 2064.
[5] Guo, L. N.; Wang, H.; Duan, X.-H. Org. Biomol. Chem. 2016, 14, 7380.
[6] (a) Bath, S.; Laso, M. N.; Lopez-Ruiz, H.; Quiclet-Sire, B.; Zard, S. Z. Chem. Commun. 2003, 204.
(b) Liu, Z.-J.; Zhang, J.; Chen, S.-L.; Shi, E.; Xu, Y.; Wan, X.-B. Angew. Chem., Int. Ed. 2012, 51, 3231.
(c) Liu, Y.; Li, Y.; Qi, Y.; Wan, J. Synthesis 2010, 4188.
[7] Ryu, I. Chem. Soc. Rev. 2001, 30, 16.
[8] (a) Clark, A. J. Chem. Soc. Rev. 2002, 31, 1.
(b) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800.
[9] Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261.
[10] (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
(b) Prier, C. K.; Rankic, A. D.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(c) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
(d) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
[11] (a) Wu, J.; Li, J.; Li, H.; Zhu, C. Chin. J. Org. Chem. 2017, 37, 2203(in Chinese). (吴江, 李嘉雯, 李昊, 朱纯银, 有机化学, 2017, 37, 2203.)
(b) Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica 2017, 75, 22(in Chinese). (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
(c) Ruan, L.; Dong, Z.; Chen, C.; Wu, S.; Sun, J. Chin. J. Org. Chem. 2017, 37, 2544(in Chinese). (阮利衡, 董振诚, 陈春欣, 吴爽, 孙京, 有机化学, 2017, 37, 2544.)
(d) Guan, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese). (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
(e) Dai, X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046(in Chinese). (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
[12] (a) Li, Z.-Y.; Li, D.-D.; Wang, G.-W. J. Org. Chem. 2013, 78, 10414.
(b) Li, H.; Li, P.; Wang, L. Chem. Commun. 2013, 49, 9170.
(c) Li, H.; Li, P.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.
[13] Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.
[14] Ji, W.; Tan, H.; Wang, M.; Li, P.; Wang, L. Chem. Commun. 2016, 52, 1462.
[15] Zhang, J.-J.; Cheng, Y.-B.; Duan, X.-H. Chin. J. Chem. 2017, 35, 311.
[16] Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem.-Eur. J. 2015, 21, 13191.
[17] Chu, L.-L.; Lipshultz, J.-M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.
[18] (a) Labinger, J. A. Chem. Rev. 2017, 117, 8483.
(b) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
(c) Wei, Y.; Hu, P.; Zhang, M.; Su, W.-P. Chem. Rev. 2017, 117, 8864.
(d) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498.
[19] (a) Ding, H.; Li, J.; Guo, Q.; Xiao, Y. Chin. J. Org. Chem. 2017, 37, 3112(in Chinese). (丁怀伟, 李娟, 郭庆辉, 肖琰, 有机化学, 2017, 37, 3112.)
(b) Zhu, Q.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813(in Chinese). (朱庆, 王露, 夏谷春, 刘超, 有机化学, 2016, 36, 2813.)
(c) He, J.; Lou, S.; Xu, D. Chin. J. Org. Chem. 2016, 36, 1218(in Chinese). (何将旗, 娄绍杰, 许丹倩, 有机化学, 2016, 36, 1218.)
[20] Gu, L.-J.; Jin, C.; Liu, J.-Y.; Zhang, H.-T.; Yuan, M.-L.; Li, G.-P. Green Chem. 2016, 18, 1201.
[21] Shi, Q.; Li, P.; Zhu, X.; Wang, L. Green. Chem. 2016, 18, 4916.
[22] Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198.
[23] Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem.-Eur. J. 2016, 22, 2236.
[24] Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem. 2014, 126, 512; Angew. Chem., Int. Ed. 2014, 53, 502.
[25] Hui, T.; Li, H.-J.; Ji, W.-Q.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.
[26] Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872.
[27] Sheldon, R.; Bekkum, H. Fine Chemicals through Heterogene-ous Catalysts, John Wiley & Sons Inc., New York, 2001.
[28] Esposti, S.; Dondi, D.; Fagnoni, M.; Albini, A. Angew. Chem. 2007, 119, 2583.
[29] Davelli, R.; Zema, M.; Mella, M.; Fagnoni, M.; Albinia, A. Org. Biomol. Chem. 2010, 8, 4158.
[30] Bonassi, F.; Ravelli, D.; Protti, S.; Fagnoni, M. Adv. Synth.Catal. 2015, 357, 3687.
[31] Angioni, S.; Ravelli, D.; Emma, D.; Dondi, D.; Fagnoni, M.; Albini, A. Adv. Synth. Catal. 2008, 350, 2209.
[32] Tzirakis, M. D.; Orfanopoulos, M. J. Am. Chem. Soc. 2009, 131, 4063.
[33] Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.-X.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060.
[34] Selvakumar, S.; Sakamoto, R.; Maruoka, K. Chem.-Eur. J. 2016, 22, 6552.
[35] Jiang, J.; Ramozzi, R.; Moteki, S.; Usui, A.; Maruoka, K.; Morokuma, K. J. Org. Chem. 2015, 80, 9264.
[36] Papadopoulos, G. N.; Voutyritsa, E.; Kaplaneris, N.; Kokotos, G. C. Chem.-Eur. J. 2018, 24, 1726.
[37] Vu, M. D.; Das, M.; Liu, X.-W. Chem.-Eur. J. 2017, 23, 15899.
[38] Li, J.; Wang, D. Z. Org. Lett. 2015, 17, 5260.
[39] Mitchell, L. J.; Lewis W.; Moodye, C. J. Green Chem. 2013, 15, 2830.
[40] Cheng, P.; Qing, Z.-X.; Liu, S.; Liu, W.; Xie, H.-Q.; Zeng, J.-G. Tetrahedron Lett. 2014, 55, 6647.
[41] Sharma, U. K.; Gemoets, H. P. L.; Schroder, F.; Noel, T.; Eycken, E.V. ACS Catal. 2017, 7, 3818.
[42] Zhang, L.-L.; Zhang, G.-T.; Li, Y.-L.; Wang, S.-C.; Lei, A.-W. Chem. Commun. 2018, 54, 5744.
[43] Kawaai, K.; Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.; Ikari, A.; Itoh, A. J. Org. Chem. 2018, 83, 1988.
[44] Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Albini, A. Angew. Chem., Int. Ed. 2011, 50, 1869.
[45] Okada, M.; Fukuyama, T.; Yamada, K.; Ryu, I.; Ravelli, D.; Fagnoni, M. Chem. Sci. 2014, 5, 2893
[46] Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 1.
[47] Gu, L.-J.; Jin, C.; Liu, J.-Y. Green Chem. 2015, 17, 3733.
[48] Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.
[49] Chow, S. Y.; Stevens, M. Y.; Akerbladh, L.; Bergman, S.; Odell, L. R. Chem.-Eur. J. 2016, 22, 9155.
[50] Bergonzini, G.; Cassani, C.; Wallentin, C. Angew. Chem., Int. Ed. 2015, 54, 14066.
[51] Zhang, M.-L.; Ruzi, R.; Xi, J.-W.; Li, N.; Wu, Z.-K.; Li, W.-P.; Yu, S.-Y.; Zhu, C.-J. Org. Lett. 2017, 19, 3430.
[52] Bergonzini, G.; Cassani, C.; Olsson, H.; Hçrberg, J.; Wallentin, C. J. Chem.-Eur. J. 2016, 22, 3292.
[53] Dong, S.; Wu, G.; Yuan, X.; Zou, C.; Ye, J. Org. Chem. Front. 2017, 4, 2230.
[54] Wang, C.-M.; Song, D.; Xia, P.-J.; Wang, J.; Xiang, H.-Y.; Yang, H. Chem.-Asian. J. 2018, 13, 271.
[55] Li, C.-G.; Xu, G.-Q.; Xu, P.-F. Org. Lett. 2017, 19, 512.
[56] Xu, S. M.; Chen, J.-Q.; Liu, D.; Bao, Y.; Liang, Y.-M.; Xu, P.-F. Org. Chem. Front. 2017, 4, 1331.
[57] Liu, Y.; Wang, Q.-L.; Zhou, C.-S.; Xiong, B.-Q.; Zhang, P.-L.; Kang, S.-J.; Yang, C.; Tang, K.-W. Tetrahedron Lett. 2018, 59, 2038.
[58] Ociepa, M.; Baka, O.; Narodowiec, J.; Gryko, D. Adv. Synth. Catal. 2017, 359, 3560.
/
〈 |
|
〉 |