研究论文

海绵放线菌Nocardiopsis dassonvillei OUCMDZ-4534的活性天然产物

  • 刘海珊 ,
  • 朱国良 ,
  • 赵水鸽 ,
  • 付鹏 ,
  • 朱伟明
展开
  • 中国海洋大学医药学院 海洋药物教育部重点实验室 青岛 266003

收稿日期: 2018-06-29

  修回日期: 2018-08-08

  网络出版日期: 2018-09-05

基金资助

国家自然科学基金(Nos.81561148012,U1501221,U1606403)资助项目.

Bioactive Natural Products from the Marine Sponge-Derived Nocardiopsis dassonvillei OUCMDZ-4534

  • Liu Haishan ,
  • Zhu Guoliang ,
  • Zhao Shuige ,
  • Fu Peng ,
  • Zhu Weiming
Expand
  • Key Laboratory of Marine Drugs, Ministry Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003

Received date: 2018-06-29

  Revised date: 2018-08-08

  Online published: 2018-09-05

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 81561148012, U1501221, U1606403).

摘要

拟诺卡氏菌(Nocardiopsis dassonvillei)OUCMDZ-4534分离自西沙贪婪倔海绵(Dysidea avara),其发酵提取物表现出生物碱显色、系列紫外吸收及抑菌和肿瘤细胞毒活性.从其发酵产物中分离到12个化合物.通过质谱(MS)、紫外(UV)、红外光谱(IR)、电子圆二色谱(ECD)、核磁共振(NMR)和化学计算等方法,首次确定了外消旋体1中对映体的绝对构型分别为(3aS,7aS)-3a-羟基-3a,7a-二氢苯并呋喃-2(3H)-酮(1a)和(3aR,7aR)-3a-羟基-3a,7a-二氢苯并呋喃-2(3H)-酮(1b),其它化合物依次被确定为吩嗪(2)、1-羟基吩嗪(3)、1-甲氧基吩嗪(4)、1,6-二羟基吩嗪(5)、1-羟基-6-甲氧基吩嗪(6)、1,6-二羟基吩嗪-5-氧化物(7)、2-(4-甲基-2,6-二羟基-3,5-二氯)苯甲酰基-3-甲氧基-5-羟基苯甲酸甲酯(8)、N-(2-羟基苯基)乙酰胺(9)、N-(2-羟基苯基)苯甲酰胺(10)、(E)-3-(4-羟基)苯丙烯酸(11)和(E)-3-(4-羟基-3-甲氧基)苯丙烯酸(12).化合物19分别对A549和K562细胞有选择性抑制作用,半数抑制浓度(IC50)分别为0.47和0.46 μmol·L-1;化合物4~8对K562、A549和MCF-7细胞表现出不同程度抑制作用,IC50值在0.02~1.48 μmol·L-1之间;化合物11对K562细胞以及化合物12对K562和MCF-7细胞有较强抑制活性,IC50分别为1.14、0.88和0.62 μmol·L-1.化合物78分别对烟曲霉(Aspergillus fumigates)和交替假单胞菌(Pseudoalteromonas nigrifaciens)有抑制活性,其最小抑菌浓度(MIC)分别为25.00和2.00 μg·mL-1.化合物4~69还表现出对甲型流感H1N1病毒的抑制活性,IC50分别为0.04、0.15、0.06和0.30 mmol·L-1.

本文引用格式

刘海珊 , 朱国良 , 赵水鸽 , 付鹏 , 朱伟明 . 海绵放线菌Nocardiopsis dassonvillei OUCMDZ-4534的活性天然产物[J]. 有机化学, 2019 , 39(2) : 507 -514 . DOI: 10.6023/cjoc201806045

Abstract

Nocardiopsis dassonvillei OUCMDZ-4534 was isolated and identified from the sponge, Dysidea avara, from Xisha Islands of China. Compounds 1~12 were isolated from the fermenation broth of N. dassonvillei OUCMDZ-4534. By means of spectroscopic analysis, electronic circular dichroism (ECD) and 13C NMR calculations, their structures were identified as (3aS,7aS)-3a-hydroxy-3a,7a-dihydrobenzofuran-2(3H)-one (1a), (3aR,7aR)-3a-hydroxy-3a,7a-dihydrobenzofuran-2(3H)-one (1b), phenazine (2), 1-hydroxyphenazine (3), 1-methoxyphenazine (4), 1,6-dihydroxyphenazine (5), 1-hydroxy-6-methoxy-phenazine (6), 1,6-dihydroxy phenazin-5-oxide (7), dihydrogeodin (8), 2-acetamidophenol (9), 2-benzamidophenol (10), (E)-7-hydroxy cinnamic acid (11), and (E)-7-hydroxy-6-methoxycinnamic acid (12), respectively. This is the first time to resolve racemic-1 and identify the absolute structures of 1a and 1b. Compounds 1 and 9 displayed selective inhibition on A549 and K562 cell lines with the half maximal inhibitory concentration (IC50) of 0.47 and 0.46 μmol·L-1, respectively. Compounds 4~8 showed inhibitory activities against K562, A549 and MCF-7 cell lines with IC50 values ranging from 0.02 to 1.48 μmol·L-1. Compound 11 was cytotoxic to K562 while compound 12 was active against K562 and MCF-7 cell lines with the IC50 values of 1.14, 0.88 and 0.65 μmol·L-1, respectively. Compounds 7 and 8 showed antimicrobial activities against Aspergillus fumigatus and Pseudoalteromonas nigrifaciens with the minimum inhibitory concentration (MIC) of 25.00 and 2.00 μg·mL-1, respectively. Compounds 4~6 and 9 also exhibited inhibitions against the H1N1 virus with the IC50 values of 0.04, 0.16, 0.06 and 0.30 mmol·L-1, respectively.

参考文献

[1] Yotsu, M.; Yamazaki, T.; Meguro, Y.; Endo, A.; Murata, M.; Naoki, H.; Yasumoto, T. Toxicon 1987, 25, 225.
[2] Freeman, E. M. Philos. Trans. R. Soc. Lond. 1904, 196, 1.
[3] Elneketi, M.; Ebrahim, W.; Lin, W.; Gedara, S.; Badria, F.; Saad, H. E.; Lai, D.; Proksch, P. J. Nat. Prod. 2013, 76, 1099.
[4] Li, L.; Su, W. J. Jimei Univ. (Nat. Sci.) 2000, 80(in Chinese). (李利君, 苏文金, 集美大学学报(自然科学版), 2000, 80.)
[5] Liu, H.; Zhu, G.; Fan, Y.; Du, Y.; Lan, M.; Xu, Y.; Zhu, W. Front. Chem. 2018. 6, 45.
[6] Zhao, C.; Zhu, T.; Zhu, W. Chin. J. Org. Chem. 2013, 33, 1195(in Chinese). (赵成英, 朱统汉, 朱伟明, 有机化学, 2013, 33, 1195.)
[7] Ding, Z. G.; Zhao, J. Y.; Li, M. G.; Huang, R.; Li, Q. M.; Cui, X. L.; Zhu, H. J.; Wen, M. L. J. Nat. Prod. 2012, 75, 1994.
[8] Wang, Z.; Fu, P.; Liu, P.; Wang, P.; Hou, J.; Li, W.; Zhu, W. Chem. Biodiversity 2013, 10, 281.
[9] Fu, P.; Liu, P.; Qu, H.; Wang, Y.; Chen, D.; Wang, H.; Li, J.; Zhu, W. J. Nat. Prod. 2011, 74, 2219.
[10] Mei, X.; Wang, L.; Wang, D.; Fan, J.; Zhu, W. Chin. J. Org. Chem. 2017, 37, 2352(in Chinese). (梅显贵, 王立平, 王冬阳, 范杰, 朱伟明, 有机化学, 2017, 37, 2352.)
[11] Wang, C.; Wang, L.; Fan, J.; Sun, K.; Zhu, W. Chin. J. Org. Chem. 2017, 37, 658(in Chinese). (王聪, 王立平, 范杰, 孙坤来, 朱伟明, 有机化学2017, 37, 658.)
[12] Du, Y.; Sun, J.; Gong, Q.; Wang, Y.; Fu, P.; Zhu, W. J. Agric. Food Chem. 2018, 66, 1807.
[13] Creencia, E. C.; Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T. J. Heterocycl. Chem. 2009, 46, 1309.
[14] Conda-Sheridan, M.; Marler, L.; Park, E. J.; Kondratyuk, T. P.; Jermihov, K.; Mesecar, A. D.; Pezzuto, J. M.; Asolkar, R. N.; Fenical, W.; Cushman M. J. Med. Chem. 2010, 53, 8688.
[15] Breitmaier, E.; Hollstein, U. J. Org. Chem. 1976, 41, 2104.
[16] Mateo, A. A.; Horcajada, R.; Groombridge, H. J.; Chudasama, N. M. R.; Motevalli, M.; Utley, J. H.; Wyatt, P. B. Org. Biomol. Chem. 2005, 3, 2832.
[17] Lu, C. H.; Li, Y. Y.; Wang, H. X.; Wang, B. M.; Shen, Y. M. Drug Discovery Ther. 2013, 7, 101.
[18] Cheng, M. J.; Min, T.; Chen, I. S.; Liao, C. C.; Yuan, G. F. J. Chil. Chem. Soc. 2009, 54, 198.
[19] Sato, S.; Okusa, N.; Ogawa, A.; Ikenoue, T.; Seki, T.; Tsuji, T. J. Antibiot. 2005, 58, 583.
[20] Nicoletti, M.; Iorio, M. A. Magn. Reson. Chem. 1986, 24, 221.
[21] Lee, H.; Kim, M.; Jun, Y. M.; Kim, B. H.; Lee, B. M. Heteroat. Chem. 2011, 22, 158.
[22] Salum, M. L.; Robles, C. J.; Errabalsells, R. Org. Lett. 2010, 12, 4808.
[23] Li, H. W.; Zhi, X. Y.; Yao, J. C.; Zhou, Y.; Tang, S. K.; Klenk, H. P.; Zhao, J.; Li, W. J. PLoS One 2013, 8, e61528.
[24] Ismail, W.; El-Said Mohamed, M.; Wanner, B. L.; Datsenko, K. A.; Eisenreich, W.; Rohdich, F.; Bacher, A.; Fuchs, G. Eur. J. Biochem. 2003, 14, 3047.
[25] Smith, S. G.; Goodman, J. M. J. Am. Chem. Soc. 2010, 132, 12946.
[26] Kong, F.; Cheng, Z.; Hao, J.; Wang, C.; Wang, W.; Huang, X.; Zhu, W. RSC Adv. 2015, 5, 68852.
[27] Xiong, T.; Chen, X.; Wei, H.; Xiao, H. Arch. Med. Sci. 2015, 11, 301.
[28] Song, F.; Ren, B.; Chen, C.; Yu, K.; Liu, X.; Zhang, Y.; Yang, N.; He, H.; Liu, X.; Dai, H. Appl. Microbiol. Biotechnol. 2014, 98, 3753.
[29] Namikoshi, M.; Negishi, R.; Nagai, H.; Dmitrenok, A.; Koba-yashi, H. J. Antibiot. 2003, 56, 755.
[30] Lin, Y.; Wang, L.; Wang, Y.; Wang, W.; Hao, J.; Zhu, W. Chin. J. Org. Chem. 2015, 35, 1955(in Chinese). (林亚伟, 王立平, 王乂, 王伟, 郝杰杰, 朱伟明, 有机化学, 2015, 35, 1955.)
[31] Wallace, J. M.; Söderberg, B. C. G.; Tamariz, J.; Akhmedov, N. G.; Hurley, M. T. Tetrahedron 2008, 64, 9675.
[32] Edwards, O. E.; Gillespie, D. C. Tetrahedron Lett. 1966, 7, 4867.
[33] Agnihotri, V. P. Pathol. Microbiol. 1965, 28, 265.
[34] Ying, Y. M.; Zhan, Z. J.; Ding, Z. S.; Shan, W. G. Chem. Nat. Compd. 2011, 47, 541.
[35] Faler, C. A.; Joullie, M. M. Tetrahedron Lett. 2006, 47, 7229.
[36] Junek, R.; Kverka, M.; Jandera, A.; Panajotová, V.; Satinský, D.; Machácek, M.; Kuchar, M. Eur. J. Med. Chem. 2009, 44, 332.
[37] Ergün, B. C.; Coban, T.; Onurdag, F. K.; Banoglu, E. Arch. Pharm. Res. 2011, 34, 1251.

文章导航

/