羰基还原酶在动态动力学拆分中的应用进展
收稿日期: 2018-06-07
修回日期: 2018-08-07
网络出版日期: 2018-09-10
Recent Advances on Carbonyl Reductases for Dynamic Kinetic Resolution
Received date: 2018-06-07
Revised date: 2018-08-07
Online published: 2018-09-10
倪国伟 , 汤佳伟 , 邹杰 , 陈少欣 , 鞠佃文 , 张福利 . 羰基还原酶在动态动力学拆分中的应用进展[J]. 有机化学, 2019 , 39(2) : 339 -349 . DOI: 10.6023/cjoc201806012
Biocatalysis is a basic method of asymmetric catalysis for preparing chiral Active Pharmaceutical Ingredients, which owns several "green merits":chemo-, regio-and high enantioselectivity. As the development of DNA seqencing, DNA synthesis and protein engineering, suitable enzymes can be efficiently developed for basic researches and industrial applications. Biocatalysis has been keeping as a hot spot in asymmetric synthesis recently. Carbonyl reductases have been widely used for stereoselectively transforming ketones to chiral second alcohols with only one stereocenter. When combining with Dynamic Kinetic Resolution (DKR), the bioreaction with carbonyl reductases can efficiently construct chiral alcohols with two stereocenters in one step. This review highlights the method of its mechanism and nearly twenty examples from research papers and patents for one decade. We attempt to analyze and conclude the characteristics of this method based on chemical structures and enzymes. At last, a practical and developing research method is recommended in three steps:screening-racemization-balance in sequence. It is hoped to be useful for future basic researches and industrial applications.
[1] Lin, G.-Q.; Li, M.-Y.; Chen, Y.-Q.; Sun, X.-W.; Chen, X.-Z. Chiral Synthesis-Asymmetric Reactions and Its Application, Science Press, Beijing, 2010, p. 584(in Chinese). (林国强, 李明月, 陈耀全, 孙兴文, 陈兴滋, 手性合成-不对称反应及其应用(第四版), 科学出版社, 北京, 2010, p. 584.)
[2] Straathof, A. J.; Panke, S.; Schmid, A. Curr. Opin. Biotechnol. 2002, 13, 548.
[3] Tao, J.-H.; Lin, G.-Q.; Liese, A. Biocatalysis for the Pharmaceutical Industry Discovery, Development and Manufaturing, Chemical Industry Press, Beijing, 2010, p. 3(in Chinses). (陶军华, 林国强, 安德烈亚斯·李斯, 生物催化在制药工业的应用——发现、开发与生产, 化学工业出版社, 北京, 2010, p. 3.)
[4] Truppo, M. D.; Pollard, D.; Devine, P. Org. Lett. 2007, 9, 335.
[5] Kavanagh, K. L.; Klimacek, M.; Nidetzky, B.; Wilson, D. K. Biochemistry 2002, 41, 8785.
[6] Xu, Z.; Jing, K.; Liu, Y.; Cen, P. J. Ind. Microbiol. Biotechnol. 2007, 1, 83.
[7] Inoue, K.; Makino, Y.; Itoh, N. Appl. Environ. Microb. 2005, 7, 3633.
[8] Ma, S. J.; Gruber, J.; Davis, C.; Newman, L.; Gray, D.; Wang, A.; Grate, J.; Huisman, G. W.; Sheldon, R. A. Green Chem. 2010, 12, 81.
[9] Liang, J.; Lalonde, J.; Borup, B.; Mitchell, V.; Mundorff, E.; Trinh, N.; Kochrekar, D. A.; Cherat, R. N.; Pai, G. G. Org. Process Res. Dev. 2010, 193.
[10] Nurit, P.; Ayelet, M. WO 2008151324. 2008.
[11] Bong, Y. K.; Vogel, M.; Collier, S. J.; Mitchell, V.; Mavinahalli, J. WO 2011005527, 2010.
[12] Li, H. G.; Moncecchi, J.; Truppo, M. D. Org. Pro. Res. Dev. 2015, 19, 695.
[13] Savile, C.; Gruber, J. M.; Mundorff, E.; Huisman, G. W.; Collier, S. J. WO 20100252, 2009.
[14] Isotani, K.; Kurokawa, J. J.; Itoh, N. Int. J. Mol. Sci. 2012, 13, 13542.
[15] Zheng, W.-X.; Xu, G.-C.; Huang, L.; Pan, J.; Yu, H.-L.; Xu, J.-H. Org. Lett. 2013, 19, 4917.
[16] Zhang, F.-L.; Ni, G.-W. Chen, S.-X.; Ju, D.-W.; Tang, J.-W.; Tan, Z.-M.; Zou, J.; Guo, X.; Wang, Z.-W. CN 201611008108, 2016.
[17] Zhang, F.-J.; Liu, Y.; Peng, X.-Q.; Guo, C.; Wu, Z.-L. Appl. Microbiol. Biotechnol. 2016, 5, 1.
[18] Liang, J.; Jenne, S. J.; Mundorff, E.; Ching, C.; Gruber, J. M.; Krebber, A.; Huisman, G. W. WO 2009036404, 2008.
[19] Xu, G.-P.; Wang, H.-B.; Wu, Z.-L. Process Biochem. 2016, 51, 881.
[20] Tao, J.-H.; Li, G.-Q.; Liese, A. Biocatalysis for the Pharmaceutical Industry-Discovery, Development and Manufaturing, Chemical Industry Press, Beijing, 2010, p. 121(in Chinese). (陶军华, 林国强, 安德烈亚斯·李斯, 生物催化在制药工业的应用——发现、开发与生产, 化学工业出版社, 北京, 2010, p. 121.)
[21] Luetz, S.; Giver, L.; Lalonde, J. Engineered Enzymes for Chemical Production. Biotechnology and Bioengineering, 2008, 4, 647.
[22] Tufvesson, P.; Lima-Ramos, J.; Nordblad, M.; Woodley, J. M. Org. Process. Res. Dev. 2011, 15, 266.
[23] Xin, L. H.; Nicholas, W.; Hans, I.; Vera, J.; Zhang, H. M.; Koenig, S. G.; Gossselin, Francis. Org. Process Res. Dev. 2017, 3, 387.
[24] Hou, X. P.; Zhang, H. P.; Chen, B. C. Guo, Z. W.; Singh, A.; Goswami, A.; Gilmore, J. L.; Sheppeck, J. E.; Dyckman, A. J. Carter, P. H.; Mathur, A. Org. Process Res. Dev. 2017, 2, 200.
[25] Ginotra, S. K. J.; Friest, A.; Berkowitz, D. B. Org. Lett. 2012, 14, 968.
[26] Pellissier, H. Adv. Synth. Catal. 2011, 353, 659.
[27] Cheng, Y.-M.; Xu, G.; Wu, J.-P.; Yang, L.-R. Chin. J. Org. Chem. 2010, 31, 1695(in Chinese). (程咏梅, 徐刚, 吴坚平, 杨丽蓉, 有机化学, 2010, 31, 1695.)
[28] Zhang, Z.-H.; Liu, Q.-B. Chin. J. Org. Chem. 2005, 25, 780(in Chinese). (张占辉, 刘庆彬, 有机化学, 2005, 25, 780.)
[29] Larsson A. L. E.; Persson, B. A.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 1997, 36, 1211.
[30] Sakulsombat, M.; Vongvilai, P.; Ramström, O. Chem.-Eur. J. 2014, 20, 11322.
[31] Lhum, M. D.; Toulouse, J. R. US 5204469, 1991.
[32] Reddy, B. S. WO 2006003671, 2004.
[33] Wang, X.-L.; Xu, L.-J.; Yan, L.-J.; Wang, H.-F.; Han, S.; Wu, Y.; Chen, F. Tetrahedron 2016, 72, 1787.
[34] Sayo, N.; Satio, T.; Okeda, Y.; Nagashima, H.; Kumobayashi, H. US 4981992, 1991.
[35] Li, X.-M.; Tao, X.-M.; Ma, X.; Li, W.-F.; Zhao, M.-M.; Xie, X.-M.; Ayad, T.; Ratovelomanana-Vidal, V.; Zhang, Z.-G. Tetrahedron 2013, 34, 7152.
[36] Deol, B. S.; Ridley, D.; Simpson, G. Aust. J. Chem. 1976, 29, 2459.
[37] Gamenara, D.; Sevane, G. A.; Mendez, P. S.; Maria, P. D. Redox Biocatalysis, Wiley, New Jewery 2013, Chapter 3.
[38] Faber, K.; Fessner, W. D.; Turner, N. J. Biocatalysis in Organic Synthesis 2, Georg Thieme Verlag KG, New York, 2015, pp. 421~458.
[39] Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Nature 2012, 485, 185.
[40] Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Sarena, T.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J.; Devine, P. N.; Huisman, G. W.; Hughes, G. J. Science 2010, 329, 305.
[41] Zheng, M.-M.; Chen, K.-C.; Wang, R.-F.; Li, H.; Li, C.-X.; Xu, J.-H. J. Agric. Food Chem. 2017, 6, 1178.
[42] Kalaitzakis, D.; Rozzell, J. D.; Kambourakis, S.; Smonou, L. Org. Lett. 2005, 7, 4799.
[43] Lüdeke, S.; Richter, M.; Müller, M. Adv. Synth. Catal. 2009, 351, 253.
[44] Yasohara, Y.; Yano, M.; Kawano, S.; Kizaki, N. JP 200521371, 2005.
[45] Onorato, C.; Emily, M.; Birthe, B.; Rama, V. US 9719071, 2007.
[46] Juan, M. S.; Busto, E.; Gotor, V.; Vicente, G. F. Org. Lett. 2013, 15, 3872.
[47] Hyde, A. M.; Liu, Z. J.; Kosjek, B.; Tan, L. S.; Klapars, A.; Ashley, E. R.; Zhong, Y. L.; Alvizo, O.; Agard, N. J.; Liu, G. Q.; Gu, X. Y.; Yasuda, N.; Limanto, J.; Huffman, M. A.; Tschaen, D. M. Org. Lett. 2016, 18, 5888.
[48] Dimitris, K.; Ioulia, S. J. Org. Chem. 2010, 4, 8659.
[49] Danchet, S.; Bigot, C.; Buisson, D.; Azerad, R. Tetrahedron:Asymmetry 1997, 11, 1735.
[50] Kosjek, B.; Tellers, D. M.; Biba, M.; Farr, R.; Moore, J. Tetrahedron:Asymmetry 2006, 17, 2798.
[51] Musa, M. M.; Ziegelmann-Field, K. I.; Vieille, C.; Zeikus, J. G.; Phillips, R. S. J. Org. Chem. 2007, 72, 30.
[52] Feske, B. D.; Kaluzna, I. A.; Stewart, J. D. J. Org. Chem. 2005, 70, 9654.
[53] Marocco, C. P.; Davis, E. V.; Finnell, J. E.; Nguyen, P. H.; Mateer, S. C.; Ghiviriga, I.; Padgett, C. W.; Feske, B. D. Tetrahedron:Asymmetry. 2011, 22, 1784.
[54] Perrone, M. G.; Santandrea, E.; Scilimati, A.; Syldatk, C.; Tortorella, V.; Capitellic, F.; Bertolasi, V. Tetrahedron:Asymmetry 2004, 15, 3511.
[55] Patal, R.; Banerjso, A.; Howell, J. M.; Mcnameo, C. G.; Bro-zozowski, D.; Mirfakhras, D.; Naaduri, V.; Thottathll, J. K.; Starka, L. J. Tetrahedron:Asymmetry 1993, 9, 2069.
[56] Kataoka, M.; Nakamura, Y.; Urano, N.; Ishige, T.; Shi, G.; Kita, S.; Sakamoto, K.; Shimizu, S. Lett. Appl. Microbiol. 2006, 43, 430.
[57] Kataoka, M.; Ishige, T.; Urano, N.; Nakamura, Y.; Sakuradani, E.; Fukui, S.; Kita, S.; Sakamoto, K.; Shimizu, S. Appl. Microbiol. Biotechnol. 2008, 80, 597.
[58] Urano, N.; Fukui, S.; Kumashiro, S.; Ishige, T.; Kita, S.; Sa-kamoto, K.; Kataoka, M.; Kita, S.; Shimizu, S. J. Biosci. Bioeng. 2011, 3, 266.
[59] Xu, F.; Chung, J. Y. L.; Moore, J. C.; Liu, Z. Q.; Yoshikawa, N.; Hoerrner, R. S.; Lee, J.; Royzen, M.; Cleator, E.; Gibson, A. G.; Dunn, R.; Maloney, K. M.; Alam, M.; Goodyear, A.; Lynch, J.; Yasuda, N.; Devine, P. N. Org. Lett. 2013, 6, 1342.
[60] Friest, J. A.; Maezato, Y.; Broussy, S.; Blum, P.; Berkowitz, D. B. J. Am. Chem. Soc. 2010, 132, 5930.
[61] Applegate, G. A.; Berkowitz, D. B. Adv. Synth. Catal. 2015, 357, 1619.
[62] Limanto, J.; Ashley, E. R.; Yin, J. J.; Beutner, G..; Grau, B. T.; Klapars, A. M.; Kim, M. M.; Klapars, A. P.; Liu, Z. J.; Strotman, H. R.; Truppo, M. D. Org. Lett. 2014, 16, 2716.
[63] Peng, Z. H.; Wong, J. H.; Hansen, E. C.; Puchlopek-Dermenci, A. L. A.; Clarke, H. J. Org. Lett. 2014, 16, 860.
/
〈 |
|
〉 |