研究简报

酸酐诱导的2-(1-羟基-1-苯烷基)苯酚一步合成邻酰氧基二芳基烯烃

展开
  • a 华东理工大学化学与分子工程学院 上海 200237;
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032

收稿日期: 2018-07-16

  修回日期: 2018-09-04

  网络出版日期: 2018-09-26

基金资助

国家自然科学基金(No.21372075)和上海浦江人才计划(No.16PJD017)资助项目.

Anhydride Induced One-Pot Synthesis of ortho-Acyloxy Diarylalkenes from 2-(1-Hydroxy-1-arylalkyl)phenols

Expand
  • a School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2018-07-16

  Revised date: 2018-09-04

  Online published: 2018-09-26

Supported by

Project supported by the National Natural Science Foundation of China (No. 21372075) and the Shanghai Pujiang Program (No. 16PJD017).

摘要

报道了2-(1-羟基-1-苯烷基)苯酚与酸酐和三乙胺的反应,为合成邻酰氧基二芳基烯烃提供了一种切实可行的方法,它是许多生物活性物质的重要组成和很多有机合成的起始原料.该反应可以在一步中实现,在温和的条件下具有优异的产率.

本文引用格式

吕雯雯, 贺信淳, 施敏, 王飞军 . 酸酐诱导的2-(1-羟基-1-苯烷基)苯酚一步合成邻酰氧基二芳基烯烃[J]. 有机化学, 2019 , 39(2) : 532 -537 . DOI: 10.6023/cjoc201807024

Abstract

Reaction of 2-(1-hydroxy-1-arylalkyl)phenols with anhydride and NEt3 was reported, providing a practical way to the synthesis of ortho-acyloxy diarylalkenes, which is an important motif in many bioactive compounds and starting materials in many organic synthesis. This reaction can be achieved in one pot reaction under mild conditions in good yields.

参考文献

[1] Jain, N. K.; Krishnamurty, H. G. Indian J. Chem., Sect. B 2000, 39, 817.
[2] Arnone, A.; Modugno, V. D.; Nasini, G.; Pava, O. V. Gazz. Chim. Ital. 1990, 120, 397.
[3] Shaiq, A. M.; Shaukat, M.; Shaista, P.; Uddin, A. U.; Hafeez, G. Phytochemistry 1999, 50, 1385.
[4] (a) Zheng, Y.-L.; Liu, Y.-Y.; Wu, Y.-M.; Wang, Y.-X. Lin, Y.-T.; Ye, M.-C. Angew. Chem., Int. Ed. 2016, 55, 6315.
(b) Botteghi, C.; Corrias, T.; Marchetti, M.; Paganelli, S.; Piccolo, O. Org. Process Res. dev. 2002, 6, 379.
[5] (a) Zhang, Z.; Ju, T.; Miao, M.; Han, J.-L.; Zhang, Y.-H.; Zhu, X.-Y.; Ye, J.-H.; Yu, D.-J.; Zhi, Y.-G. Org. Lett. 2017, 19, 396.
(b) Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 10954.
(c) Li, J.-F.; Chang, W.-J.; Ren, W.-L.; Liu, W.; Wang, H.-N.; Shi, Y. Org. Biomol. Chem. 2015, 13, 10341.
[6] (a) Ghorai, J.; Reddy, A. C. S.; Anbarasan, P. Chem.-Eur. J. 2016, 22, 16042.
(b) Yang, D.-J.; Zhu, Y.-F.; Yang, N.; Jiang, Q.-Q.; Liu, R.-H. Adv. Synth. Catal. 2016, 358, 1731.
(c) Chang, M.-Y.; Huang, Y.-H.; Wang, H.-S. Tetrahedron 2016, 72, 3022.
[7] (a) Han, Y.-P.; Song, X.-R.; Qiu, Y.-F.; Li, X.-S.; Zhang, H.-R.; Zhu, X.-Y.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 3866.
(b) Casanova, N.; Seoane, A.; MascareÇas, J. L.; Gulias, M. Angew. Chem., Int. Ed. 2015, 54, 2374.
[8] (a) Wang, Z.-B.; Ai, F.-J.; Wang, Z.; Zhao, W.-X.; Zhu, G.-G.; Lin, Z.-Y.; Sun, J.-W. J. Am. Chem. Soc. 2015, 137, 383.
(b) Chen, J.-H.; Chen, C.-H.; Ji, C.-L.; Lu, Z. Org. Lett. 2016, 18, 1594.
[9] Nicolaou, K. C.; Snyder, S. A.; Huang, X.-H.; Simonsen, K. B.; Koumbis, A. E.; Bigot, A. J. Am. Chem. Soc. 2004, 126, 10162.
[10] Kaswan, P.; Shelke, M. G.; Rao, K. V.; Kumar, A. Synlett 2016, 27, 2553.
[11] Wang, Z.-N.; He, X.-X.; Zhang, R.; Zhang, G.; Xu, G. X.; Zhang, Q.; Xiong, T.; Zhang, Q. Org. Lett. 2017, 19, 3067.
[12] Han, P.; Wang, R.-J.; Wang, D. Z. Tetrahedron 2011, 67, 8873.
[13] Zhang, Q.; Zheng, G.-F.; Zhang, Q; Li, Y. J. Org. Chem. 2017, 82, 8258.
[14] Xie, J.; Li, J.; Weingand, V.; Rudolph, M.; Hashmi, A. S. K. Chem.-Eur. J. 2016, 22, 12646.
[15] Moure, M. J.; Martin, R. S.; Dominguez, E. Angew. Chem., Int. Ed. 2012, 57, 3220.
[16] (a) Haldar, S.; Koner, S. Beilstein J. Org. Chem. 2013, 9, 49.
(b) Tochigi, A.; Tsukamoto, K.; Suzuki, N.; Masuyama, Y. Eur. J. Org. Chem. 2016, 5678.
[17] Chang, M.-Y.; Huang, Y.-H.; Wang, H.-S. Tetrahedron 2016, 72, 3022.
[18] Zou, Y.-J.; Qin, L.-N.; Ren, X.-F.; Lu, Y.-P.; Li, Y.-X.; Zhou, J.-R. Chem. Eur. J. 2013, 19, 3504.
[19] Berthiol, F.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2003, 1091.
[20] Hamze, A.; Veau, D.; Provot, O.; Brion, J. D.; Alami, M. J. Org. Chem. 2009, 74, 1337.
[21] Roche, M.; Hamze, A.; Provot, O.; Brion, J. D.; Alami, M. J. Org. Chem. 2013, 78, 445.
[22] (a) Zhang, Y.; He, Y.; Li, L.-S.; Ji, M.-M.; Li, X.-Z.; Zhu, G.-G. J. Org. Chem. 2018, 83, 2898.
(b) Hu, F.-D.; Xia, Y.; Ye, F.; Liu, Z.-X.; Ma, C.; Zhang, Y.; Wang, J.-B. Angew. Chem., Int. Ed. 2014, 53, 1364.
[23] Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 10954.
[24] (a) Brady, W. T.; Giang, Y. F. J. Org. Chem. 1985, 50, 5177.
(b) Wang, Z.-B.; Ai, F.-J.; Wang, Z.; Zhao, W.-X.; Zhu, G.-Y.; Lin, Z.-Y.; Sun, Z.-W. J. Am. Chem. Soc. 2015, 137, 383.
(c) Ogawa, N.; Yamaoka, Y.; Yamada, K.; Takasu, K. Org. Lett. 2017, 19, 3327.
[25] (a) Chiang, Y.; Jerry, K. A. Org. Biomol. Chem. 2004, 2, 1090.
(b) Uchida, M.; Kuma, M.; Irie, M. Bull. Chem. Soc. Jpn. 1996, 69, 1023.
(c) Guo, L.; Zhang, F.-Y.; Hu, W.-M.; Lia, L.; Jia, Y.-X. Chem. Commun. 2014, 50, 3299.
(d) Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 10954.
[26] Hull, F. J.; Balcells, D.; Sauer, L. O. E.; Raynaud, C.; Brudvig, W. G.; Crabtree, H. R.; Eisenstein, O. J. Am. Chem. Soc. 2010, 132, 7605.
[27] Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 10954.

文章导航

/