研究简报

快速溶剂交换法制备疏水性二氧化硅气凝胶及其负载有机荧光探针的应用研究

  • 王亚飞 ,
  • 张涛 ,
  • 郭旭东 ,
  • 胡睿 ,
  • 王双青 ,
  • 杨国强
展开
  • a 中国科学院化学研究所光化学重点实验室 中国科学院大学 北京 100190;
    b 中国科学院深圳先进技术研究院先进材料中心 深圳 518055

收稿日期: 2018-08-05

  修回日期: 2018-09-06

  网络出版日期: 2018-09-26

基金资助

国家自然科学基金(Nos.21873106,21627802)资助项目.

Preparation of Hydrophobic SiO2 Aerogel by Rapid Solvents Exchange Method and Its Application Loaded with Organic Fluorescence Probe

  • Wang Yafei ,
  • Zhang Tao ,
  • Guo Xudong ,
  • Hu Rui ,
  • Wang Shuangqing ,
  • Yang Guoqiang
Expand
  • a Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190;
    b Center of Advanced Material Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055

Received date: 2018-08-05

  Revised date: 2018-09-06

  Online published: 2018-09-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21873106, 21627802).

摘要

气凝胶是流动相为气体的凝胶材料,具有低密度、高孔隙率的特性,有着广泛的应用前景.本工作开发了一种快速溶剂交换法,利用原位二级萃取的原理,通过乙醇-二氯甲烷-水三种溶剂间互溶-不互溶的特性实现了气凝胶制备中的快速溶剂交换,结合疏水性处理和减压干燥得到了疏水性二氧化硅气凝胶.所得到的气凝胶密度低,与水的接触角达到155.8°.该气凝胶可以负载多种有机荧光探针染料,可以有效避免由于探针分子聚集而引起的荧光猝灭,将有可能使有机荧光探针在更广泛的领域得到实际应用.

本文引用格式

王亚飞 , 张涛 , 郭旭东 , 胡睿 , 王双青 , 杨国强 . 快速溶剂交换法制备疏水性二氧化硅气凝胶及其负载有机荧光探针的应用研究[J]. 有机化学, 2019 , 39(2) : 550 -554 . DOI: 10.6023/cjoc201808002

Abstract

Aerogel is a kind of gel materials, of which the fluid phase is gas. Aerogel has the characteristics of low density and high porosity, and has a wide application prospects. In this work, a rapid solvents exchange method was developed, and using in-situ secondary extraction, rapid solvents exchange in aerogel preparation was achieved through the miscibility and immiscibility of ethanol-dichloromethane-water. Combined with hydrophobic treatment and vacuum drying, hydrophobic silica aerogel was obtained. The aerogel had a low density and a contact angle with water of 155.8°. The aerogel can load various organic fluorescent probe dyes, which can effectively avoid the fluorescence quenching caused by the aggregation of the probe molecules, which it will expand the practical application range of the organic fluorescent probes in wider fields.

参考文献

[1] Wang, X. C.; Li, J. Z.; Li, G. Y.; Wang, J.; Zhang, X. T.; Guo, Q. Acta Phys.-Chim. Sin. 2017, 33, 2141(in Chinese). (王叙春, 李金泽, 李广勇, 王锦, 张学同, 郭强, 物理化学学报, 2017, 33, 2141.)
[2] Cuce, E.; Cuce, P. M.; Wood, C. J.; Riffat, S. B. Renewable Sustainable Energy Rev. 2014, 34, 273.
[3] Gurav, J. L.; Jung, I.-K.; Park, H.-H.; Kang, E. S.; Nadargi, D. Y. J. Nanomater. 2010, 409310.
[4] Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook, Springer, New York, 2011.
[5] Hüsing, N.; Schubert, U. Angew. Chem., Int. Ed. 1998, 37, 22.
[6] Jia, G. H; Li, Z; Liu, P; Jing, Q. S. J. Non-Cryst. Solids 2018, 482, 192.
[7] Wei, T.-Y.; Chang, T.-F.; Luw, S.-Y.; Chang, Y.-C. J. Am. Ceram. Soc. 2007, 90, 2003.
[8] Chen, Q. F.; Wang, H.; Sun, L. Y. Materials 2017, 10, 435.
[9] Feng, J.; Tian, K. J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Zeng, Y.; Li, Y.; Yang, G. Q. Angew. Chem., Int. Ed. 2011, 50, 8072.
[10] Liu, J.; Guo, X. D.; Hu, R.; Xu, J.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Anal. Chem. 2015, 87, 3694.
[11] Cao, L. X.; Li, X. Y.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Chem. Commun. 2014, 50, 8787.
[12] Li, S.; Hu, R.; Yang, C. L.; Zhang, X.; Zeng, Y.; Wang, S. Q.; Guo, X. D.; Li, Y.; Cai, X. P.; Li, S. R.; Han, C. W.; Yang, G. Q. Biosens. Bioelectron. 2017, 98, 325.
[13] Hu, D. H.; Zhang, T.; Li. S. Y.; Yu, T. J.; Zhang, X. H.; Hu, R.; Feng, J.; Wang, S. Q.; Liang, T. L.; Chen, J. M.; Sobenina, L. N.; Trofimov, B. A.; Li, Y.; Ma, J. S.; Yang, G. Q. Nat. Commun. 2018, 9, 362.
[14] Kolanowski, J. L.; Liu, F.; New, E. J. Chem. Soc. Rev. 2018, 47, 195.
[15] Sinkeldam, R. W.; Greco, N. J. Tor, Y. Chem. Rev. 2010, 110, 2579.
[16] Zhao, Z. S.; Guo, X. D.; Li, S. Y.; Yang, G. Q. Acta Chim. Sinica 2016, 74, 593(in Chinese). (赵振盛, 郭旭东, 李沙瑜, 杨国强, 化学学报, 2016, 74, 593.)
[17] Xu, M. M.; Guo, C.; Hu, G. F.; Xu, S. Y.; Wang, L. Y. Chin. J. Chem. 2018, 36, 25.
[18] Yang, L. M.; Liu, B.; Li, N., Tang, B. Acta Chim. Sinica 2017, 75, 1047(in Chinese). (杨立敏, 刘波, 李娜, 唐波, 化学学报, 2017, 75, 1047.)
[19] Wang, S. J.; Li, C. W.; Li, J.; Chen, B.; Guo, Y. Acta Chim. Sinica 2017, 75, 383(in Chinese). (王少静, 李长伟, 李锦, 陈邦, 郭媛, 化学学报, 2017, 75, 383.)
[20] Theaker, B. J.; Hudson, K. E.; Rowell, F. J. Forensic Sci. Int. 2008, 174, 26.
[21] Domínguez, G.; Westphal, A. J.; Phillips, M. L. F.; Jones, S. M. Astrophys. J. 2003, 592, 631.
[22] Dantas, T. N. C.; Neto, A. A. D.; Moura, M. C. P. A.; Neto, E. L. B.; Forte, K. R; Leite, R. H. L. Water Res. 2003, 37, 2709.
[23] Yang, Y. Y.; Han, F. J.; Zhang, W. D.; Dai, Y. Y. Environ. Chem. 1998, 17, 19(in Chinese). (杨义燕, 韩扶军, 张旺德, 戴猷元, 环境化学, 1998, 17, 19.)
[24] Zhang, T.; Yuan, H.; Wang, S. Q.; Guo, X. D.; Hu, R.; Li, Y.; Yang, G. Q. RSC Adv. 2017, 7, 32861.
[25] Wang, Z.; Dai, Z.; Wu, J; Zhao, N.; Xu, J. Adv. Mater. 2013, 25, 4494.
[26] Huber, L.; Zhao, S. Y.; Malfait W. J.; Vares, S.; Koebel, M. M. Angew. Chem. Int. Ed. 2017, 56, 4753.
[27] Gao, M.; Tang, B. Z. ACS Sens. 2017, 2, 1382.
[28] Chen, M.; Sun, J. Z.; Qin A. J.; Tang, B. Z. Chin. Sci. Bull. 2016, 61, 304(in Chinese). (陈明, 孙景志, 秦安军, 唐本忠, 科学通报, 2016, 61, 304.)
[29] Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[30] Liu, C. X.; Zou, G. R.; Peng, S.; Wang, Y. F.; Yang, W.; Wu, F.; Jiang, Z. R.; Zhang, X.; Zhou, X. Angew. Chem., Int. Ed. 2018, 57, 9689.
[31] Plata, D. L.; Briones, Y. J.; Wolfe, R. L.; Carroll, M. K.; Bakrania, S. D.; Mandel, S. G.; Anderson, A. M. J. Non-Cryst. Solids 2004, 350, 326.

文章导航

/