研究简报

烯基叠氮与二异丙基黄原酸酯的自由基串联反应:合成6-巯甲基菲啶

  • 陆露露 ,
  • 周丙伟 ,
  • 金红卫 ,
  • 刘运奎
展开
  • 浙江工业大学化学工程学院 绿色化学与技术国家重点实验室培育基地 杭州 310014

收稿日期: 2018-07-16

  修回日期: 2018-09-10

  网络出版日期: 2018-10-12

基金资助

国家自然科学基金(Nos.21772176,21372201)、浙江工业大学"省重中之重一级学科"开放基金资助项目.

Radical-Triggered Tandem Reaction of Vinyl Azides with Isopropylxanthic Disulfide for the Synthesis of 6-Sulfanylmethyl Phenanthridines

  • Lu Lulu ,
  • Zhou Bingwei ,
  • Jin Hongwei ,
  • Liu Yunkui
Expand
  • State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2018-07-16

  Revised date: 2018-09-10

  Online published: 2018-10-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772176, 21372201), the Opening Foundation of Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technology.

摘要

发展了偶氮二异丁腈诱发的烯基叠氮类化合物与二异丙基黄原酸酯的自由基串联反应,一步构建了碳-硫和碳-氮键.以50%至80%的收率方便和高区域选择性地合成了一系列官能化的6-巯甲基菲啶类化合物.机理研究表明该反应通过自由基路径进行.

本文引用格式

陆露露 , 周丙伟 , 金红卫 , 刘运奎 . 烯基叠氮与二异丙基黄原酸酯的自由基串联反应:合成6-巯甲基菲啶[J]. 有机化学, 2019 , 39(2) : 515 -520 . DOI: 10.6023/cjoc201807025

Abstract

An 2,2'-azobis(2-methylpropionitrile) (AIBN) initiated tandem reaction of vinyl azides with isopropylxanthic disulfide to construct C-S/C-N bonds was disclosed. A range of functionalized 6-sulfanylmethyl phenanthridines could be easily accessed in 50%~84% yields with a good regioselectivity. The mechanism study indicates a free radical pathway in this reaction.

参考文献

[1] (a) Keene, B. R. T.; Tissington, P. Adv. Heterocycl. Chem. 1971, 13, 315.
(b) Bernardo, P. H.; Wan, K. F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.; Mok, H. Y. K.; Yu, V. C.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699.
(c) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.
[2] (a) Cappelli, A.; Anzini, M.; Vomero, S.; Mannuni, L.; Makovec, F.; Doucet, E.; Hamon, M.; Bruni, G.; Romeo, M. R.; Menziani, M. C.; Benedetti, P. G.; Langer, T. J. Med. Chem. 1998, 41, 728.
(b) Lynch, M. A.; Duval, O.; Sukhanova, A.; Devy, J.; MacKay, S. P.; Waigh, R. D.; Nabiev, I. Bioorg. Med. Chem. Lett. 2001, 11, 2643.
(c) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 1053.
(d) Cappoen, D.; Claes, P.; Jacobs, J.; Anthonissen, R.; Mathys, V.; Verschaeve, L.; Huygen, K.; Kimpe, N. D. J. Med. Chem. 2014, 57, 2895.
(e) Naidua, K. M.; Nagesha, H. N.; Singhb, M.; Sriramc, D.; Yogeeswaric, P.; Sekhara, K. V. G. C. Eur. J. Med. Chem. 2015, 92, 415.
(f) Riddell, I. A.; Johnstone, T. C.; Park, G. Y.; Lippard, S. J. Chem.-Eur. J. 2016, 22, 7574.
[3] (a) Alonso, R.; Campos, P. J.; García, B.; Rodríguez, M. A. Org. Lett. 2006, 8, 3521.
(b) Portela-Cubillo, F.; Lymer, J.; Scanlan, E. M.; Scott, J. S.; Walton, J. C. Tetrahedron 2008, 64, 11908.
(c) McBurney, R. T.; Slawin, A. M. Z.; Smart, L. A.; Yu, Y.; Walton, J. C. Chem. Commun. 2011, 47, 7974.
(d) McBurney, R. T.; Walton, J. C. J. Am. Chem. Soc. 2013, 135, 7349.
(e) McBurney, R. T.; Walton, J. C. Beilstein J. Org. Chem. 2013, 9, 1083.
(f) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed. 2015, 54, 4055.
(g) Hofstra, J. L.; Grassbaugh, B. R.; Tran, Q. M.; Armada, N. R.; de Lijser, H. J. P. J. Org. Chem. 2015, 80, 256.
(h) Liu, X.; Qing, Z.; Cheng, P.; Zheng, X.; Zeng, J.; Xie, H. Molecules 2016, 21, 1690.
(i) Tang, J.; Sivaguru, P.; Ning, Y.; Zanoni, G.; Bi, X. Org. Lett. 2017, 19, 4026.
[4] (a) Nanni, D.; Pareschi, P.; Rizzoli, C.; Sgarabotto, P.; Tundo, A. Tetrahedron 1995, 51, 9045.
(b) Tobisu, M.; Koh, K.; Furukawa, T.; Chatani, N. Angew. Chem., Int. Ed. 2012, 51, 11363.
(c) Zhang, B.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10972.
(d) Leifert, D.; Daniliuc, C. G.; Studer, A. Org. Lett. 2013, 15, 6286.
(e) Sha, W.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 9179.
(f) Fang, H.; Zhao, J.; Qian, P.; Han, J.; Pan, Y. Asian J. Org. Chem. 2014, 3, 1266.
(g) Xiao, T.; Li, L.; Lin, G.; Wang, Q.; Zhang, P.; Mao, Z.-W.; Zhou, L. Green Chem. 2014, 16, 2418.
(h) Fang, H.; Zhao, J. C.; Qian, P.; Han, J. L.; Pan, Y. Asian J. Org. Chem. 2014, 12, 1266.
(i) Zhang, Z.; Tang, X.; Dolbier, W. R., Jr. Org. Lett. 2015, 17, 4401.
(j) Lu, S.; Gong, Y.; Zhou, D. J. Org. Chem. 2015, 80, 9336.
(k) Zhang, H.; Shi, D.; Ren, S.; Jin, H.; Liu, Y. Eur. J. Org. Chem. 2016, 4224.
(l) Wu, C.; Zhou, Y.; Dong, X.; Qu, J. ARKIOC 2016, 110.
(m) Yang, Z.; Song, X.; Wei, Z.; Cao, J.; Liang, D.; Duan, H.; Lin, Y. Tetrahedron Lett. 2016, 57, 2410.
(n) Singh, M.; Yadav, A. K.; Yadav, L. D. S.; Singh, R. K. P. Synlett 2018, 29, 176.
[5] (a) Wang, Y.-F.; Lonca, G. H.; Runigo, M. L.; Chiba, S. Org. Lett. 2014, 16, 4272.
(b) Yang, J.-C.; Zhang, J.-J.; Guo, L.-N. Org. Biomol. Chem. 2016, 14, 9806.
(c) Sun, X.; Yu, S. Chem. Commun. 2016, 52, 10898.
(d) Mackay, E. G.; Studer, A. Chem. Eur. J. 2016, 22, 13455.
(e) Mao, L.-L.; Zheng, D.-G.; Zhu, X.-H.; Zhou, A.-X.; Yang, S.-D. Org. Chem. Front. 2018, 5, 232.
(f) Li, Y.; Zhu, Y.; Yang, S.-D. Org. Chem. Front. 2018, 5, 822.
(g) Yang, J.-C.; Zhang, J.-Y.; Zhang, J.-J.; Duan, X.-H.; Guo, L.-N. J. Org. Chem. 2018, 83, 1598.
[6] (a) Casellato, U.; Vidali, M.; Vigato, P. A. Coord. Chem. Rev. 1979, 28, 231.
(b) Nief, F. Coord. Chem. Rev. 1998, 178.
(c) Arda, M.; Ozturk, I. I.; Banti, C. N.; Kourkoumelis, N.; Manoli, M.; Tasiopoulos, A. J.; Hadjikakou, S. K. RSC Adv. 2016, 6, 29026.
(d) Ephritikhine, M. Coor. Chem. Rev. 2016, 319, 35.
(e) Boreen, M. A.; Parker, B. F.; Hohloch, S.; Skeel, B. A.; Arnold, J. Dalton Trans. 2018, 47, 96.
[7] (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
(b) Doroszuk, J.; Musiejuk, M.; Demkowicz, S.; Rachon, J.; Witt, D. RSC Adv. 2016, 6, 105449.
(c) Jiao, J.; Wei, L.; Ji, X.-M.; Hu, M.-L.; Tang, R.-Y. Adv. Synth. Catal. 2016, 358, 268.
(d) Dong, Z.-B.; Liu, X.; Bolm, C. Org. Lett. 2017, 19, 5916.
(e) Cao, Q.; Peng, H.-Y.; Cheng, Y.; Dong, Z.-B. Synthesis 2018, 50, 1527.
[8] (a) Fuchigami, T.; Chen, C.-S.; Nonaka, T.; Yen, M.-Y.; Tien, H.-J. Bull. Chem. Soc. Jpn. 1986, 59, 487.
(b) Gueyrard, D.; Tatibouët, A.; Gareau, Y.; Rollin, P. Org. Lett. 1999, 1, 521.
(c) Enders, D.; Rembiak, A.; Liebich, J. X. Synthesis 2011, 281.
(d) Camerel, F.; Jeannin, O.; Yzambart, G.; Fabre, B.; Lorcy, D.; Fourmigué, M. New J. Chem. 2013, 37, 992.
(e) Zhang, L.; Zhu, J.; Ma, J.; Wu, L.; Zhang, W.-H. Org. Lett. 2017, 19, 6308.
[9] (a) Tan, J.; Guo, Y.; Zeng, F.; Chen, G.; Xie, L.; He, W. Chin. J. Org. Chem. 2018, 38, 1740.
(b) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.
[10] (a) Sibbald, P. A.; Michael, F. E. Org. Lett. 2009, 11, 1147.
(b) Albéniz, A.C.; Espinet, P.; López-Fernández, R.; Sen, A. J. Am. Chem. Soc. 2002, 124, 11278.
[11] Winterie, J. S.; Mill, T. J. Am. Chem. Soc. 1980, 102, 6336.
[12] Gareau, Y.; Beauchemin, A. Heterocycles 1998, 48, 2003.
[13] Curran, D. P.; Keller, A. J. Am. Chem. Soc. 2006, 128, 13706.
[14] Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3038.

文章导航

/