研究论文

N,N-二(2-吡啶甲基)胺基三聚茚衍生物的合成及对铜离子、镍离子的选择性识别

  • 朱阳明 ,
  • 王忠龙 ,
  • 杨剑 ,
  • 徐徐 ,
  • 王石发 ,
  • 蔡正春 ,
  • 徐海军
展开
  • a 南京林业大学化学工程学院 江苏生物质能源与化学品重点实验室 南京 210037;
    b 江苏省生物质能源与材料重点实验室 南京 210042

收稿日期: 2018-07-23

  修回日期: 2018-09-25

  网络出版日期: 2018-10-12

基金资助

江苏省自然科学基金(No.BK20151513)、霍英东教育基金(No.141030)、江苏省生物质能源与材料重点实验室(No.JSBGFC12002)及江苏高校优势学科建设工程(PAPD)资助项目.

N,N-Bis(2-pyridylmethyl)amine-Based Truxene Derivative as a Highly Sensitive Fluorescence Sensor for Cu2+ and Ni2+ Ion

  • Zhu Yangmin ,
  • Wang Zhonglong ,
  • Yang Jian ,
  • Xu Xu ,
  • Wang Shifa ,
  • Cai Zhengchun ,
  • Xu Haijun
Expand
  • a College of Chemical Engineering, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037;
    b Jiangsu Key Laboratory for Biomass Energy and Material of Jiangsu Province, Nanjing 210042

Received date: 2018-07-23

  Revised date: 2018-09-25

  Online published: 2018-10-12

Supported by

Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20151513), the Fok Ying Tung Education Foundation (No. 141030), the Fund from Jiangsu Key Laboratory for Biomass Energy and Material (No. JSBEM201702) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

摘要

以二(2-吡啶甲基)胺(DPA)和三聚茚为原料,设计合成了一种"turn-off"型荧光探针化合物6,表征了其结构,研究了它对不同金属离子的识别作用.结果表明,化合物6对Cu2+和Ni2+具有较高的灵敏性和选择性,在NN-二甲基甲酰胺(DMF)/H2O(V/V=8/2,pH=7.0)溶液中对Cu2+、Ni2+显示出荧光淬灭效应,且对Cu2+检测几乎不受其他金属离子的干扰;高分辨质谱证明化合物6与Cu2+、Ni2+结合计量比为1:1;化合物6对Cu2+的检测极限可低至28 nmol/L,对Ni2+的检测极限可低至41 nmol/L,检测极限均低于世界卫生组织(WHO)规定的饮用水中两种离子最大含量,有潜在的应用价值.

本文引用格式

朱阳明 , 王忠龙 , 杨剑 , 徐徐 , 王石发 , 蔡正春 , 徐海军 . N,N-二(2-吡啶甲基)胺基三聚茚衍生物的合成及对铜离子、镍离子的选择性识别[J]. 有机化学, 2019 , 39(2) : 427 -433 . DOI: 10.6023/cjoc201807042

Abstract

A new turn-off probe 6 was synthesized from bis(pyridin-2-ylmethyl)amine and truxene derivatives, and its structure was confirmed by 1H NMR and HRMS. The recognition behaviors of 6 to various metal ions were investigated and the results show that 6 exhibited good selectivity and high sensitivity to Cu2+ and Ni2+ with good anti-interference. The probe 6 presented apparent fluorescence quenching in DMF/H2O (V/V=8/2, pH=7.0) solution toward Cu2+ and Ni2+. HRMS analysis showed a 1:1 binding stoichiometry between 6 and Cu2+ or Ni2+. The detection limit for Cu2+ and Ni2+ was calculated to be 28 and 41 nmol/L, respectively. The detection limit of 6 for Cu2+ and Ni2+ was far lower than the maximum allowable level of World Health Organization (WHO) limit for drinking water.

参考文献

[1] Priya, R. S.; Kunal, P.; Satish, K. Coord. Chem. Rev. 2018, 357, 18.
[2] Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517.
[3] Sona, B. W.; Prashant, S. K. J. Lumin. 2018, 199, 407.
[4] Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Chem. Rev. 2006, 106, 1995.
[5] Zhang, X.; Guo, X.; Yuan, H.; Jia, X.; Dai, B. Dyes Pigm. 2018, 155, 100.
[6] Yin, K.; Wu, Y.; Wang, S.; Chen, L. Sens. Actuators, B 2016, 232, 257.
[7] Qing, Z.; Zhu, L.; Yang, S.; Cao, Z.; He, X.; Wang, K.; Yang, R. Biosens. Bioelectron 2016, 78, 471.
[8] Manivasagaperumal, R.; Vijayarengan, P.; Balamurugan, S.; Thiyagarajan, G. J. Phytol. 2011, 3, 53.
[9] Cambrollé, J.; García, J. L.; Figueroa, M. E.; Cantos, M. Chemosphere 2015, 120, 171.
[10] Anupam, G.; Jahangir, M.; Amit, K. M.; Shubhamoy, C.; Goutam, K. P. Anal. Methods 2018, 10, 1063.
[11] Jiao, Y.; Zhou, L.; He, H.; Yin, J.; Gao, Q.; Wei, J.; Duan, C.; Peng X. Talanta 2018, 184, 143.
[12] Tian, M. Z.; Hu, M. M.; Fan, J. L.; Peng, X. J.; Wang, J. Y.; Sun, S. G.; Zhang, R. Bioorg. Med. Chem. Lett. 2013, 23, 2916.
[13] Kumar, G. G. V.; Kesavan, M. P.; Sankarganesh, M.; Sakthipandi, K.; Rajesh, J.; Sivaraman, G. New J. Chem. 2018, 42, 2865.
[14] Bezerra, M. A.; dos Santos, W. N. L.; Lemos, V. A.; Korn, M.; Ferreira, S. L. C. J. Hazard Mater. 2007, 148, 334.
[15] Lee, Y.; Liu, H.; Lee, J.; Kim, S.; Sessler, J.; Kim, Y. Chem.-Eur. J. 2010, 16, 5895.
[16] Bandyopadhyay, P.; Ghosh, A. K. J. Phys. Chem. B 2010, 114, 11462.
[17] Peralta-Domínguez, D.; Rodríguez, M.; Ramos-Ortíz, G.; Maldonado, J. L.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillan, R.; Farfán, N. Sens. Actuators, B 2015, 207, 511.
[18] Kumar, M.; Bhalla, M.; Dhir, A.; Babuet, J. N. Dalton Trans. 2010, 39, 10116.
[19] Liu, X. Q.; Zhou, X.; Shu, X.; Zhu, J. Macromolecules 2009, 42, 7634.
[20] Feng, L.; Zhang, Y.; Wen, L. Y.; Chen, L.; Shen, Z.; Guan, Y. F. Analyst 2011, 136, 4197.
[21] Wang, H. X.; Wang, D. L.; Wang, Q.; Li, X. Y; Schalley, C. A. Org. Biomol. Chem. 2010, 8, 1017.
[22] Goodman, J. E. R.; Prueitt, L.; Dodge, D. G.; Thakali, S. Crit. Rev. Toxicol. 2009, 39, 365.
[23] Costa, M.; Davidson, T. L.; Chen, H.; Ke, Q; Zhang, P.; Yan, Y.; Huang, C.; Kluz, T. Mutat. Res. 2005, 592, 79.
[24] Subashini, G.; Shankar, R.; Arasakumar, T.; Mohan, P. S. Sens. Actuators, B 2017, 243, 549.
[25] Chen, C.; Men, G.; Bu, W.; Liang, C.; Sun, H.; Jiang, S. Sens. Actuators, B 2015, 220, 463.
[26] Li, Y.; Zhang, N.; Jin, K.; Xu, Y.; Wang, S.; Zhou, X. Chin. J. Org. Chem. 2017, 37, 2640(in Chinese). (李英俊, 张楠, 靳焜, 许永廷, 王思远, 周晓霞, 有机化学, 2017, 37, 2640.)
[27] Ren, A.; Zhu, D.; Xie, W.; He, X.; Duan, Z.; Luo, Y.; Zhong, X.; Song, M.; Yan, X. Inorg. Chim. Acta 2018, 476, 136.
[28] Khan, R. I.; Ramu, A.; Pitchumani, K. Sens. Actuators, B 2018, 266, 429.
[29] Yang, Y.; Cao, B.; Zhang, Y.; Dong, Y. Chin. J. Org. Chem. 2017, 37, 3024(in Chinese). (杨云裳, 曹碧霞, 张应鹏, 董玉莹, 有机化学, 2017, 37, 3024.)
[30] Zhu, H.; Fan, J.; Wang, B.; Peng, X. Chem. Soc. Rev. 2015, 44, 4337.
[31] Sun, W.; Hu, D.; Wu, Z.; Song, B.; Yang, S. Chin. J. Org. Chem. 2011, 31, 997(in Chinese). (孙伟, 胡德禹, 吴志兵, 宋宝安, 杨松, 有机化学, 2011, 31, 997.)
[32] Lu, G.; Wang, K.; Kong, X.; Pan, H.; Zhang, J.; Chen, Y.; Jiang, J. ChemElectroChem 2018, 5, 605.
[33] Goswami, S.; Sen, D.; Das, N. K. Org. Lett. 2010, 12, 856.
[34] Narayanaswamy, N.; Govindaraju, T. Sens. Actuators, B 2012, 161, 304.
[35] Kumar, R.; Bhalla, V; Kumar, M. Tetrahedron 2008, 64, 8095.
[36] Devaraj, S.; Saravanakumar, D.; Kandaswamy, M. Sens. Actuators, B 2009, 136, 13.
[37] Swamy, K. M. K.; Ko, S.; Kwon, S. K.; Lee, H. N. Chem. Commun. 2008, 5915.
[38] Zhou, Y.; Wang, F.; Kim, Y.; Kim, S.; Yoon, J. Org. Lett. 2009, 11, 4442.
[39] Maity D.; Manna, A. K.; Karthigeyan, D.; Kundu, T. K.; Pati, S. K.; Govindaraju, T. Chem.-Eur. J. 2011, 17, 11152.
[40] Dolai, B.; Bhaumik, A.; Pramanik, N.; Ghosh, K. S.; Atta, A. K. J. Mol. Struct. 2018, 1164, 370.
[41] Li, T.; Yang, Z.; Li, Y.; Liu, Z.; Qi, G; Wang, B. Dyes Pigm. 2011, 88, 103.
[42] Tang, R.; Lei, K.; Chen, K.; Zhao, H.; Chen, J. J. Fluoresc. 2011, 21, 141.
[43] Ma, Y.; Lai, G.; Li, Z., Tan, W.; Shen, Y.; Wang, C. Tetrahedron 2015, 71, 8717.
[44] Jiang, Z.; Deng, R.; Tang, L.; Lu, P. Sens. Actuators, B 2008, 135, 128.
[45] Macias-Contreras, M.; Daykin, K. L.; Simmons, J. T.; Allen, J. R.; Hooper, Z. S.; Davidson, M. W.; Zhu, L. Org. Biomol. Chem. 2017, 15, 9139.
[46] Marydasan, B.; Nair, A. K.; Ramaiah, D. RSC Adv. 2013, 3, 3815.
[47] Xu, H.-J.; Du, B.; Gros, C. P.; Richard, P.; Barbe, J.-M.; Harvey, P. D. J. Porphyrins Phthalocyanines 2013, 17, 44.
[48] Chen, Y.; Jiang, J. Org. Biomol. Chem. 2012, 10, 4782.
[49] Zhao, B.; Xu, Y.; Deng, Q.; Kan, W.; Fang, Y.; Wang, L.; Gao, Y. Tetrahedron Lett. 2016, 57, 953.
[50] Yuan, M.-S.; Fang Q.; Liu, Z.-Q.; Guo, J.-P.; Chen, H.-Y.; Yu, W.-T.; Xue G.; Liu, D.-S. J. Org. Chem. 2006, 71, 7858.
[51] Yuan, M.-S.; Liu, Z.-Q.; Fang Q. J. Org. Chem. 2007, 72, 7915.

文章导航

/