研究论文

可见光促进合成三氟甲基取代的四氢呋喃和四氢吡喃

  • 王娜 ,
  • 顾强帅 ,
  • 程永峰 ,
  • 李磊 ,
  • 李忠良 ,
  • 郭臻 ,
  • 刘心元
展开
  • a 南方科技大学化学系和格拉布斯研究院 深圳 518055;
    b 太原理工大学材料科学与工程学院 新材料界面科学与工程教育部重点实验室 太原 030024;
    c 南方科技大学前沿与交叉科学研究院 深圳 518055

收稿日期: 2018-08-31

  修回日期: 2018-09-26

  网络出版日期: 2018-10-20

基金资助

国家自然科学基金(Nos.21722203,21831002,21801116和21572096)、深圳市科技研发资金(Nos.JCYJ20170412152435366和JCYJ-20170307105638498)、广东省自然科学基金(No.2018A030310083)和深圳市诺贝尔奖科学家实验室(No.C17213101)资助项目.

Visible-Light Promoted Preparation of Trifluoromethylated Tetrahydrofuran and Tetrahydropyran

  • Wang Na ,
  • Gu Qiang-Shuai ,
  • Cheng Yong-Feng ,
  • Li Lei ,
  • Li Zhong-Liang ,
  • Guo Zhen ,
  • Liu Xin-Yuan
Expand
  • a Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055;
    b Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Materials Science & Engineering, Taiyuan University of Technology, Shanxi 030024;
    c SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055

Received date: 2018-08-31

  Revised date: 2018-09-26

  Online published: 2018-10-20

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21722203, 21831002, 21801116, and 21572096), the Shenzhen Special Funds for the Development of Biomedicine, Internet, New Energy, and New Material Industries (Nos. JCYJ20170412152435366, JCYJ20170307105638498), the Natural Science Foundation of Guangdong Province (No. 2018A030310083) and the Shenzhen Nobel Prize Scientists Laboratory Project (No. C17213101).

摘要

利用相对廉价易得、操控简便的三氟甲基磺酰氯为三氟甲基自由基前体,在可见光催化下通过非活化烯烃的自由基1,2-烷氧基-三氟甲基化反应实现了一系列三氟甲基化的四氢呋喃和四氢吡喃化合物的高效合成.

本文引用格式

王娜 , 顾强帅 , 程永峰 , 李磊 , 李忠良 , 郭臻 , 刘心元 . 可见光促进合成三氟甲基取代的四氢呋喃和四氢吡喃[J]. 有机化学, 2019 , 39(1) : 200 -206 . DOI: 10.6023/cjoc201808048

Abstract

An efficient protocol for facile access to trifluoromethylated tetrahydrofuran and tetrahydropyran has been developed under visible light irradiation conditions via radical 1,2-alkoxyl-trifluoromethylation of unactivated alkene. It features the use of readily commercially available and operatively simple trifluoromethanesulfonyl chloride as a trifluoro- methyl radical source, thus making the protocol potentially appealing for practical preparation.

参考文献

[1] (a) Guéret, S. M.; Brimble, M. A. Nat. Prod. Rep. 2010, 27, 1350.
(b) Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.; Álvarez, M. Chem. Rev. 2013, 113, 4567.
(c) Xu, Y.; Wang, W.; Yang, J.; Li, X.; Meng, Q. Chin. J. Org. Chem. 2016, 36, 724(in Chinese). (徐阳荣, 王文智, 杨静静, 李新利, 孟庆国, 有机化学, 2016, 36, 724.)
[2] (a) Boivin, T. L. B. Tetrahedron 1987, 43, 3309.
(b) Nasir, N. M.; Ermanis, K.; Clarke, P. A. Org. Biomol. Chem. 2014, 12, 3323.
(c) Tikad, A.; Delbrouck, J. A.; Vincent, S. P. Chem.-Eur. J. 2016, 22, 9456.
[3] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
(d) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
[4] (a) Jeschke, P. ChemBioChem 2004, 5, 570.
(b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
(c) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16.
[5] Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell Publishing Ltd, West Sussex, 2009.
[6] (a) McClinton, M. A.; McClinton, D. A. Tetrahedron 1992, 48, 6555.
(b) Dolbier, W. R. Chem. Rev. 1996, 96, 1557.
(c) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(d) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
(e) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(f) Prakash, G. K. S.; Wang, F. In Organic Chemistry-Breakthroughs and Perspectives, Eds.:Ding, K.; Dai, L.-X., Wiley-VCH, Weinheim, 2012.
(g) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(h) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(i) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
(j) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(k) Huang, L.; Zheng, S.-C.; Tan, B.; Liu, X.-Y. Chem.-Eur. J. 2015, 21, 6718.
(l) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(m) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
(n) Groult, H.; Leroux, F. R.; Tressaud, A. Modern Synthesis Processes and Reactivity of Fluorinated Compounds, Elsevier Inc., 2017.
(o) Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060(in Chinese). (惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2011, 37, 3060.)
(p) Song, H.-X.; Han, Q.-Y.; Zhao, C.-L.; Zhang, C.-P. Green Chem. 2018, 20, 1662.
[7] (a) Magueur, G.; Crousse, B.; Charneau, S.; Grellier, P.; Bégué, J.-P.; Bonnet-Delpon, D. J. Med. Chem. 2004, 47, 2694.
(b) Frezza, M.; Balestrino, D.; Soulère, L.; Reverchon, S.; Queneau, Y.; Forestier, C.; Doutheau, A. Eur. J. Org. Chem. 2006, 2006, 4731.
(c) Chen, J.-L.; You, Z.-W.; Qing, F.-L. J. Fluorine Chem. 2013, 155, 143.
(d) Kim, S.; Kim, E.; Lee, W.; Hong, J. H. Nucleosides Nucleotides Nucleic Acids 2014, 33, 747.
(e) Kollatos, N.; Manta, S.; Dimopoulou, A.; Parmenopoulou, V.; Triantakonstanti, V. V.; Kellici, T.; Mavromoustakos, T.; Schols, D.; Komiotis, D. Carbohydr. Res. 2015, 407, 170.
(f) Shibata, H.; Tsuchikawa, H.; Hayashi, T.; Matsumori, N.; Murata, M.; Usui, T. Chem.-Asian J. 2015, 10, 915.
(g) Achmatowicz, M. M.; Allen, J. G.; Bio, M. M.; Bartberger, M. D.; Borths, C. J.; Colyer, J. T.; Crockett, R. D.; Hwang, T.-L.; Koek, J. N.; Osgood, S. A.; Roberts, S. W.; Swietlow, A.; Thiel, O. R.; Caille, S. J. Org. Chem. 2016, 81, 4736.
[8] (a) Yang, B.; Xu, X.-H.; Qing, F.-L. Chin. J. Chem. 2016, 34, 465.
(b) Li, T.; Yu, P.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. Chin. J. Chem. 2016, 34, 490.
[9] (a) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462.
(b) Beniazza, R.; Molton, F.; Duboc, C.; Tron, A.; McClenaghan, N. D.; Lastécouères, D.; Vincent, J.-M. Chem. Commun. 2015, 51, 9571.
(c) Wang, Y.; Jiang, M.; Liu, J.-T. Adv. Synth. Catal. 2016, 358, 1322.
(d) Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem., Int. Ed. 2017, 56, 8883.
[10] Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.
[11] (a) Foulard, G.; Brigaud, T.; Portella, C. J. Fluorine Chem. 1998, 91, 179.
(b) Lin, R.; Sun, H.; Yang, C.; Shen, W.; Xia, W. Chem. Commun. 2015, 51, 399.
(c) Ryzhakov, D.; Jarret, M.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2017, 19, 6336.
[12] (a) Heaton, C. A.; Powell, R. L. J. Fluorine Chem. 1989, 45, 86.
(b) Kamigata, N.; Fukushima, T.; Yoshida, M. J. Chem. Soc., Chem. Commun. 1989, 1559.
(c) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
(d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(e) Chachignon, H.; Guyon, H.; Cahard, D. Beilstein J. Org. Chem. 2017, 13, 2800.
[13] (a) Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890.
(b) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
(c) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
(d) Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852.
(e) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
(f) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.
(g) Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 7668.
[14] (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(c) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859.
(d) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(f) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
(g) Koike, T.; Akita, M. Inorg. Chem. Front. 2014, 1, 562.
(h) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
(i) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
(j) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(k) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
(l) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(m) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Acc. Chem. Res. 2016, 49, 2295.
(n) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 52.
(o) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732.
[15] (a) Huang, L.; Ye, L.; Li, X.-H.; Li, Z.-L.; Lin, J.-S.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
(b) Li, Z.-L.; Li, X.-H.; Wang, N.; Yang, N.-Y.; Liu, X.-Y. Angew. Chem., Int. Ed. 2016, 55, 15100.
(c) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026.
(d) Wang, N.; Wang, J.; Guo, Y.-L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H.-X.; Guo, Z.; Li, Z.-L.; Liu, X.-Y. Chem. Commun. 2018, 54, 8885.
[16] Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem.-Eur. J. 2013, 19, 6209.
[17] (a) Jiang, H.; Huang, C.; Guo, J.; Zeng, C.; Zhang, Y.; Yu, S. Chem.-Eur. J. 2012, 18, 15158.
(b) Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Eur. J. Org. Chem. 2013, 2013, 5485.

文章导航

/