研究论文

全氟烷基次磺酸与炔烃和联烯的加成反应

  • 李晓波 ,
  • 赵娟 ,
  • 刘倩 ,
  • 蒋敏 ,
  • 刘金涛
展开
  • 中国科学院上海有机化学研究所 上海 200032

收稿日期: 2018-08-28

  修回日期: 2018-10-18

  网络出版日期: 2018-10-26

基金资助

国家自然科学基金(Nos.21572257,21502213)资助项目.

Addition of Perfluoroalkanesulfenic Acids to Alkynes and Allenes

  • Li Xiaobo ,
  • Zhao Juan ,
  • Liu Qian ,
  • Jiang Min ,
  • Liu Jintao
Expand
  • Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2018-08-28

  Revised date: 2018-10-18

  Online published: 2018-10-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572257, 21502213).

摘要

研究了原位生成的全氟烷基次磺酸分别与炔烃和联烯的加成反应,成功合成了一系列全氟烷基烯基亚砜类化合物.结果显示芳基或烷基取代的炔烃与全氟烷基次磺酸在加热条件下可以直接得到符合马氏规则的加成产物,当炔烃上连有强吸电子取代基时,则生成类Michael加成产物.全氟烷基次磺酸与富电子联烯的加成反应选择性地发生在空间位阻较小的双键上,当联烯分子中含有吸电子基团时,则会优先选择与连接吸电子基团的双键进行反应.

本文引用格式

李晓波 , 赵娟 , 刘倩 , 蒋敏 , 刘金涛 . 全氟烷基次磺酸与炔烃和联烯的加成反应[J]. 有机化学, 2019 , 39(1) : 183 -191 . DOI: 10.6023/cjoc201808036

Abstract

The addition reaction of perfluoroalkanesulfenic acids, in-situ formed from imines, to alkynes and allenes were investigated. A series of perfluoroalkyl alkenyl sulfoxides were synthesized. Markovnikov adducts were obtained in good to excellent yields from the reactions of aryl or alkyl-substituted alkynes with perfluoroalkanesulfenic acids under mild conditions. However, the reaction of terminal alkynes containing an electron-withdrawing group afforded Michael-type adducts in good yields. The addition reaction of electron-rich allenes took place at the double bond with less steric hindrance, while the double bond connecting an electron-withdrawing group was the prior reaction site in the case of electron-deficient allenes.

参考文献

[1] Van Den Broek, L. A. G. M.; Delbressine, L. P. C.; Ottenheijm, H. C. J. In The Chemistry of Sulphenic Acids and their Derivatives, Ed.:Patai, S., John Wiley & Sons, Chichester, 1990, p. 701.
[2] (a) Aversa, M. C.; Bonaccorsi, P.; Madec, D.; Prestat, G.; Poli, G. In Innovative Catalysis in Organic Synthesis, Ed.:Andersson, P. G., Wiley-VCH Verlag, Weinheim, 2012, p. 47.
(b) Gupta, V.; Carroll, K. S. Biochem. Biophys. Acta 2014, 1840, 847.
(c) Paulsen, C. E.; Carroll, K. S. ACS Chem. Biol. 2010, 5, 47.
(d) Poole, K. J. Curr. Opin. Chem. Biol. 2008, 12, 18.
[3] Claiborne, A.; Yeh, J. I.; Mallett, T. C.; Luba, J.; Crane, E. J.; Charrier, V.; Personage, D. Biochemistry 1999, 38, 15407.
[4] (a) Block, E. Angew. Chem., Int. Ed. 1992, 31, 1135.
(b) Imai, S.; Tsuge, N.; Tomotake, M.; Nagatome, Y.; Sawada, H.; Nagata, T.; Kumagai, H. Nature 2002, 419, 685.
[5] (a) Dansette, P. M.; Thébault, S.; Bertho, G.; Mansuy, D. Chem. Res. Toxicol. 2010, 23, 1268.
(b) Dansette, P. M.; Libraire, J.; Bertho, G.; Mansuy, D. Chem. Res. Toxicol. 2009, 22, 369.
[6] Davis, F. A.; Billmers, R. L. J. Org. Chem. 1985, 50, 2593.
[7] (a) Bachi, M. D.; Gross, A. J. Org. Chem. 1982, 47, 897.
(b) Chou, T. S.; Burgtorf, J. R.; Ellis, A. L.; Lammert, S. R.; Kukolja, S. P. J. Am. Chem. Soc. 1974, 96, 1609.
(c) Nakamura, N. J. Am. Chem. Soc. 1983, 105, 7172.
(d) Goto, K.; Tokitoh, N.; Okazaki, R. Angew. Chem., Int. Ed. 1995, 34, 1124.
(e) Ishihara, M.; Abe, N.; Sase, S.; Goto, K. Chem. Lett. 2015, 44, 615.
[8] (a) Fries, K. Chem. Ber. 1912, 45, 2965.
(b) Bruice, T. C.; Markiw, R. T. J. Am. Chem. Soc. 1957, 79, 3150.
(c) Pal, B. C.; Uziel, M.; Doherty, D. G.; Cohn, W. E. J. Am. Chem. Soc. 1969, 91, 3634.
(d) Walter, W.; Bode, K. D. Liebigs Ann. Chem. 1966, 698, 122.
[9] Ishii, A.; Komiya, K.; Nakayama, J. J. Am. Chem. Soc. 1996, 118, 12836.
[10] (a) Davis, F. A.; Jenkins, R. H. J. Am. Chem. Soc. 1980, 102, 7967.
(b) Redon, M.; Janousekt,Z.; Viehe, H. G. Tedrahedron 1997, 53, 15717.
[11] Li, X.-B.; Xu, Z.-F.; Liu, L.-J.; Liu, J.-T. Eur. J. Org. Chem. 2014, 1182.
[12] (a) Colonna, S.; Gaggero, N.; Carrea, G.; Pasta, P. Chem. Commun. 1997, 439.
(b) Holland, H. L.; Brown, F. M.; Larsen, B. G. Bioorg. Med. Chem. 1994, 2, 647.
(c) Wei, J.; Sun, Z. Org. Lett. 2015, 17, 5396.
(d) Xu, F.; Chen, Y.; Fan, E.; Sun, Z. Org. Lett. 2016, 18, 2777.
[13] Li, X.-B.; Zhao, J.; Jiang, M.; Liu, J.-T. J. Fluorine Chem. 2016, 185, 24.
[14] (a) Aversa, M. C.; Bonaccorsi, P.; Faggi, C.; Lammanna, G.; Menichetti, S. Tetrahedron 2005, 61, 11902.
(b) Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P. Curr. Org. Chem. 2007, 11, 1034.
[15] (a) Davis, F. A.; Friedman, A. J.; Nadir, U. K. J. Am. Chem. Soc. 1978, 100, 2844.
(b) Davis, F. A.; Rizvi, S. Q. A.; Ardecky, R.; Gosciniak, D. J.; Friedman, A. J.; Yocklovich, S. G. J. Org. Chem. 1981, 45, 1650.
[16] Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Pergamon, Oxford, 1980.

文章导航

/