芳基三氟甲基酮类化合物的合成进展
收稿日期: 2018-08-31
修回日期: 2018-10-16
网络出版日期: 2018-10-26
基金资助
浙江省自然科学基金(No.LY18B020005)资助项目.
Recent Progress in the Synthesis of Aryl Trifluoromethyl Ketones
Received date: 2018-08-31
Revised date: 2018-10-16
Online published: 2018-10-26
Supported by
Project supported by the Natural Science Foundation of Zhejiang Province (No. LY18B020005).
芳基三氟甲基酮是一类非常重要的有机合成中间体.由于其具有潜在的生物活性,越来越引起研究者的广泛关注.综述了近年来芳基三氟甲基酮类化合物的合成,主要包括α-三氟甲基醇的氧化,羧酸衍生物的三氟甲基化,金属有机试剂、富电子芳烃,芳基卤化物、芳基重氮盐等的三氟乙酰化反应,以及其机理的探讨.
关键词: 芳基三氟甲基酮; 三氟乙酰化,偶联反应; 反应机理
张洁雨 , 柯求敏 , 陈家英 , 何平 , 严国兵 . 芳基三氟甲基酮类化合物的合成进展[J]. 有机化学, 2019 , 39(1) : 74 -83 . DOI: 10.6023/cjoc201808046
Aryl trifluoromethyl ketone is a very important intermediate in the organic synthesis. Much attention has been attracted from researchers, due to its potential bioactivity. In this paper, the recent progress in the synthesis of aryl trifluoromethyl ketone is reviewed, including the oxidant of α-trifluoromethyl alcohols, trifluoromethylation of carboxylic acid derivatives, trifluoroacetylation of organometallic reagents, electron-rich aromatics, aryl halides and aryl diazonium salts, and the reaction mechanisms are also discussed.
[1] Prakash, S, G.; Hu, J, B.; Alauddin, M, M.; Conti, P, S.; Olah, G, A. J. Fluorine Chem. 2003, 121, 239.
[2] Wang, J. J.; Li, F.; Xu, Y.; Wang, J.; Wu, Z. Y.; Yang, C. Y.; Liu, L. T. Chin. J. Org. Chem. 2018, 38, 1155.
[3] Zeng, Y. W.; Ni, C. F.; Hu, J. B. Chem.-Eur. J. 2016, 22, 3210.
[4] Kelly, C. B.; Mercadante, M. A.; Leadbeater, N. E. Chem. Commun. 2013, 49, 11133.
[5] Wu, W.; Weng, Z. Q. Synthesis 2018, 50, 1958.
[6] Gassman, P. G.; O'Reilly, N. J. J. Org. Chem. 1987, 52, 2481.
[7] Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757.
[8] Linderman, R. J.; Graves, D. M. Tetrahedron Lett. 1987, 28, 4259.
[9] Linderman, R. J.; Graves, D. M. J. Org. Chem. 1989, 54, 661.
[10] Stavber, S.; KoŠir, I.; Zupan, M. J. Org. Chem. 1997, 62, 4916.
[11] Kelly, C. B.; Mercadante, M. A.; Hamlin, T. A.; Fletcher, M. H.; Leadbeater, N. E. J. Org. Chem. 2012, 77, 8131.
[12] Cheng, H.; Pei, Y.; Leng, F.; Li, J.; Liang, A.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2013, 54, 4483.
[13] Tanaka, Y.; Ishihara, T.; Konno, T. J. Fluorine Chem. 2012, 137, 99.
[14] Matano, Y.; Hisanaga, T.; Yamada, H.; Kusakabe, S.; Nomura, H.; Imahori, H. J. Org. Chem. 2004, 69, 8676.
[15] Matano, Y.; Suzuki, T.; Iwata, T.; Shinokura, T.; Imahori, H. Bull. Chem. Soc. Jpn. 2008, 81, 1621.
[16] Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996, 274, 2044.
[17] Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Chellé-Regnaut, I.; Gautier, A.; Brown, S. M.; Urch, C. J. J. Org. Chem. 1999, 64, 2433.
[18] Kesavan, V.; Bonnet-Delpon, D.; Bégué, J.-P.; Srikanth, A.; Chandrasekaran, S. Tetrahedron Lett. 2000, 41, 3327.
[19] Blay, G.; Fernández, I.; Marco-Aleixandre, A.; Monje, B.; Pedro, J. R.; Ruiz, R. Tetrahedron 2002, 58, 8565.
[20] Mitchell, L.; Williamson, P.; Ehrlichová, B.; Anderson, A. E.; Seymour, V. R.; Ashbrook, S. E.; Acerbi, N.; Daniels, L. M.; Walton, R. I.; Clarke, M. L.; Wright, P. A. Chem. Eur. J. 2014, 20, 17185.
[21] Mei, Z.-W.; Omote, T.; Mansour, M.; Kawafuchi, H.; Takaguchi, Y.; Jutand, A.; Tsuboi, S.; Inokuchi, T. Tetrahedron 2008, 64, 10761.
[22] Kadoh, Y.; Tashiro, M.; Oisaki, K.; Kanai, M. Adv. Synth. Catal. 2015, 357, 2193.
[23] Kobayashi, Y.; Yamamoto, K.; Kumadaki, I. Tetrahedron Lett. 1979, 20, 4071.
[24] Krishnamurti, R.; Bellew, D. R.; Prakash, G. K. S. J. Org. Chem. 1991, 56, 984.
[25] Naumann, D.; Finke, M.; Lange, H.; Dukat, W.; Tyrra, W. J. Fluorine Chem. 1992, 56, 215.
[26] Kremlev, M. M.; Mushta, A. I.; Tyrra, W.; Naumann, D.; Fischer, H. T. M.; Yagupolskii, Y. L. J. Fluorine Chem. 2007, 128, 1385.
[27] Chang, Y.; Cai, C. J. Fluorine Chem. 2005, 126, 937.
[28] Yokoyama, Y.; Mochida, K. Synlett 1997, 907.
[29] Wiedemann, J.; Heiner, T.; Mloston, G.; Prakash, G. K. S.; Olah, G. A. Angew. Chem., Int. Ed. 1998, 37, 820.
[30] Singh, R. P.; Cao, G.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1999, 64, 2873.
[31] Kawano, Y.; Kaneko, N.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2006, 79, 1133.
[32] Prakash, G. K. S.; Jog, P. V.; Batamack, P. T. D.; Olah, G. A. Science 2012, 338, 1324.
[33] Rudzinski, D. M.; Kelly, C. B.; Leadbeater, N. E. Chem. Commun. 2012, 48, 9610.
[34] Shidlovskii, A. F.; Golubev, A. S.; Gusev, D. V.; Suponitsky, K. Y.; Peregudov, A. S.; Chkanikov, N. D. J. Fluorine Chem. 2012, 143, 272.
[35] Allendörfer, N.; Es-Sayed, M.; Nieger, M.; Bräse, S. Tetrahedron Lett. 2012, 53, 388.
[36] McGrath, T. F.; Levine, R. J. Am. Chem. Soc. 1955, 77, 3656.
[37] Chen, L. S.; Chen, G. J.; Tamborski, C. J. Fluorine Chem. 1981, 18, 117.
[38] Chen, L. S.; Chen, G. J.; Tamborski, C. J. Organomet. Chem. 1983, 251, 139.
[39] Creary, X. J. Org. Chem. 1987, 52, 5026.
[40] Kerdesky, F. A. J.; Basha, A. Tetrahedron Lett. 1991, 32, 2003.
[41] Yamazaki, T.; Terajima, T.; Kawasaki-Taskasuka, T. Tetrahedron 2008, 64, 2419.
[42] Funabiki, K.; Hayakawa, A.; Inuzuka, T. Org. Biomol. Chem. 2018, 16, 913.
[43] Simchen, G.; Schmidt, A. Synthesis 1996, 1093.
[44] Wynne, J. H.; Lloyd, C. T.; Jensen, S. D.; Boson, S.; Stalick, W. M. Synthesis 2004, 2277.
[45] Wang, S.; Nie, J.; Zheng, Y.; Ma, J.-A. Org. Lett. 2014, 16, 1606.
[46] Yao, S.-J.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. J. Org. Chem. 2016, 81, 4226.
[47] Vitaku, E.; Smith, D. T.; Njardarson, J. T. Angew. Chem., Int. Ed. 2016, 55, 2243.
[48] Kakino, R.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2001, 74, 371.
[49] Zhu, F.; Yang, G.; Zhou, S.; Wu, X.-F. RSC Adv. 2016, 6, 57070.
[50] Wu, W.; Tian, Q.; Chen, T.; Weng, Z. Chem.-Eur. J. 2016, 22, 16455.
[51] Yan, G.; Cao, X.; Zheng, W.; Ke, Q.; Zhang, J.; Huang, D. Org. Biomol. Chem. 2017, 15, 5904.
/
〈 |
|
〉 |