苯并二噻吩/苯并噻二唑ADA型光电化合物:氟取代的影响
收稿日期: 2018-08-28
修回日期: 2018-10-25
网络出版日期: 2018-11-12
基金资助
国家自然科学基金(Nos.21474129,21674125,51761145043)、中国科学院先导项目(No.XDB20020000)、河南省科技开放合作项目(Nos.162106000018和172106000067)和郑州技术工程学院资助项目.
Benzodithiophene/Benzothiadiazole-Based ADA-Type Optoelectronic Molecules: Influence of Fluorine Substitution
Received date: 2018-08-28
Revised date: 2018-10-25
Online published: 2018-11-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21474129, 21674125, 51761145043), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB20020000), the Science and Technology Open Cooperation Projects of Henan Province (Nos. 162106000018, 172106000067) and the Zhengzhou Institute of Technology.
在其组成的共轭基元上进行氟取代是有机光电材料功能修饰的常见策略之一.在前期苯并二噻吩/苯并噻二唑ADA型小分子光电化合物基础上,在两个苯并噻二唑基元上引入不同个数的氟取代基,考察氟修饰位置和个数对其基本性质、场效应晶体管和光伏性能的影响.研究表明,随着氟原子数目的增加,化合物的溶解性能降低,热稳定性提高,最高占有轨道和最低空轨道能级降低,但光谱吸收范围变化不大.有机场效应晶体管器件测试表明,当苯并噻二唑单氟代且位于外侧位点时,化合物的空穴迁移率有所降低;当苯并噻二唑双氟代时,迁移率得到了明显提高,达到0.27 cm2·V-1·s-1.光伏器件研究发现,氟原子的引入提高了器件的开路电压,但活性层形貌变差,最终导致短路电流密度和电池效率下降.
梁龙 , 刘丽娜 , 陈学强 , 项宣 , 凌君 , 鲁郑全 , 李靖靖 , 李维实 . 苯并二噻吩/苯并噻二唑ADA型光电化合物:氟取代的影响[J]. 有机化学, 2019 , 39(1) : 157 -169 . DOI: 10.6023/cjoc201808034
Fluorination on conjugated components is one of popular strategies to modify organic optoelectronic materials. Following the research of a benzodithiophene/benzothiadiazole ADA-type optoelectronic molecule, two benzothiadiazole (BT) units were fluorinated with different numbers and positions, and the change in basic properties and performances for field-effect transistors and organic solar cells was investigated. It was found that when the F-substitution number increases, the molecule enhances thermal stability, decreases solubility, lowers HOMO and LUMO energy levels, but almost does not alter light absorption range. Furthermore, investigations on organic field-effect transistors found the molecular hole mobility reduces with only one F-substituent at outer position of BT units, while increases up to 0.27 cm2·V-1·s-1 with two F substituents on BT units. However, when these materials are applied in organic solar cells, the fluorinated ones enhance open-circuit voltage, but deteriorate active layer morphology, finally leading to decrease in short-circuit current and device efficiency.
[1] (a) Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22, 3839.
(b) Facchetti, A. Chem. Mater. 2011, 23, 733.
(c) Ilmi, R.; Haque, A.; Khan, M. S. Org. Electr. 2018, 58, 53.
(d) Guo, H.; Li, W.; Chang, C.; Guo, X.; Zhang, M. Chin. J. Chem. 2018, 36, 502.
(e) Liang, X.; Wang, Z.; Wang, L.; Hanif, M.; Hu, D.; Su, S.; Xie, Z.; Gao, Y.; Yang, B.; Ma, Y. Chin. J. Chem. 2017, 35, 1559.
[2] (a) Zhao, X.; Zhan, X. Chem. Soc. Rev. 2011, 40, 3728.
(b) Di, C.; Yu, G.; Liu, Y.; Zhu, D. J. Phys. Chem. B 2007, 111, 14083.
(c) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
[3] (a) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. Nature 2009, 459, 234.
(b) Yang, X.; Zhou, G.; Wong, W. Y. Chem. Soc. Rev. 2015, 44, 8484.
(c) Jou, J. H.; Kumar, S.; Agrawal, A.; Li, T. H.; Sahoo, S. J. Mater. Chem. C 2015, 3, 2974.
[4] Chem, H.; Chen, Y.; Li, Z.; Yang, Q.; Xin, L. Chin. J. Org. Chem. 2012, 32, 46(in Chinese). (陈红海, 陈玉哲, 李仲谨, 杨清正, 辛利, 有机化学, 2012, 32, 46.)
[5] (a) Zhang, G.; Zhang, K.; Yin, Q.; Jiang, X. F.; Wang, Z.; Xin, J.; Ma, W.; Yan, H.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2017, 139, 2387.
(b) Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H.-L.; Peng, X.; Cao, Y.; Chen, Y. Nat. Photonics 2017, 11, 85.
(c) Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027.
(d) Deng, D.; Zhang, Y. J.; Zhang, J. Q.; Wang, Z. Y.; Zhu, L. Y.; Fang, J.; Xia, B. Z.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. X. Nat. Commun. 2016, 7, 13740.
(e) Li, Y. F. Acc. Chem. Res. 2012, 45, 723.
(f) Yang, F.; Li, C.; Lai, W.; Zhang, A.; Huang, H.; Li, W. Mater. Chem. Front. 2017, 1, 1389.
(g) Liu, W.; Zhou, Z.; Vergote, T.; Xu, S.; Zhu, X. Mater. Chem. Front. 2017, 1, 2349.
[6] (a) Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 8176.
(b) Li, G.; Chu, C. W.; Shrotriya, V.; Huang, J.; Yang, Y. Appl. Phys. Lett. 2006, 88, 253503.
(c) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222.
(d) He, Z.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Adv. Mater. 2011, 23, 4636.
[7] (a) Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864.
(b) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497.
(c) Zimmerman, J. D.; Xiao, X.; Renshaw, C. K.; Wang, S.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2012, 12, 4366.
(d) Wang, J. L.; Xiao, F.; Yan, J.; Wu, Z.; Liu, K. K.; Chang, Z. F.; Zhang, R. B.; Chen, H.; Wu, H. B.; Cao, Y. Adv. Funct. Mater. 2016, 26, 1803.
(e) Liu, X.; Ye, L.; Zhao, W.; Zhang, S.; Li, S.; Su, G. M.; Wang, C.; Ade, H.; Hou, J. Mater. Chem. Front. 2017, 1, 2057.
[8] (a) Neugebauer, H.; Brabec, C.; Hummelen, J. C.; Sariciftci, N. S. Sol. Energy Mater. Sol. Cells 2000, 61, 35.
(b) Lu, L.; Kelly, M. A.; You, W.; Yu, L. Nat. Photonics 2015, 9, 491.
(c) Min, J.; Luponosov, Y. N.; Gasparini, N.; Richter, M.; Bakirov, A. V.; Shcherbina, M. A.; Chvalun, S. N.; Grodd, L.; Grigorian, S.; Ameri, T.; Ponomarenko, S. A.; Brabec, C. J. Adv. Energy Mater. 2015, 5, 1500386.
[9] Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y. Science 2018, 361, 1094.
[10] (a) Lei, Y.; Deng, P.; Zhang, Q.; Xiong, Z.; Li, Q.; Mai, J.; Lu, X.; Zhu, X.; Ong, B. S. Adv. Funct. Mater. 2018, 28, 1706372.
(b) Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. J. Am. Chem. Soc. 2013, 135, 14896.
[11] (a) Xiao, S.; Zhang, Q.; You, W. Adv. Mater. 2017, 29, 1601391.
(b) Zhang, Z.; Li, Y. Sci. China:Chem. 2015, 58, 192.
(c) Chen, H.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G. W.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649.
[12] (a) Tang, M. L.; Bao, Z. A. Chem. Mater. 2011, 23, 446.
(b) Oh, J.; Kranthiraja, K.; Lee, C.; Gunasekar, K.; Kim, S.; Ma, B.; Kim, B. J.; Jin, S.-H. Adv. Mater. 2016, 28, 10016.
(c) Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 1806.
[13] (a) Zhang, M.; Guo, X.; Zhang, S.; Hou, J. Adv. Mater. 2014, 26, 1118.
(b) Kawashima, K.; Fukuhara, T.; Suda, Y.; Suzuki, Y.; Koganezawa, T.; Yoshida, H.; Ohkita, H.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2016, 138, 10265.
[14] Reichenbacher, K.; Suss, H. I.; Hulliger, J. Chem. Soc. Rev. 2005, 34, 22.
[15] Lu, L.; Yu, L. Adv. Mater. 2014, 26, 4413.
[16] (a) Yoon, M.-H.; DiBenedetto, S. A.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 1348.
(b) Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. J. Am. Chem. Soc. 2000, 122, 10240.
[17] Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. J. Am. Chem. Soc. 2009, 131, 7792.
[18] Son, H. J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L. J. Am. Chem. Soc. 2011, 133, 1885.
[19] (a) Zhang, Y.; Chien, S.-C.; Chen, K.-S.; Yip, H.-L.; Sun, Y.; Davies, J. A.; Chen, F.-C.; Jen, A. K.-Y. Chem. Commun. 2011, 47, 11026.
(b) Schroeder, B. C.; Huang, Z.; Ashraf, R. S.; Smith, J.; D¢Angelo, P.; Watkins, S. E.; Anthopoulos, T. D.; Durrant, J. R.; McCulloch, I. Adv. Funct. Mater. 2012, 22, 1663.
[20] (a) Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Angew. Chem., Int. Ed. 2011, 50, 2995.
(b) Peng, Q.; Liu, X.; Su, D.; Fu, G.; Xu, J.; Dai, L. Adv. Mater. 2011, 23, 4554.
[21] Hu, J.; Wang, X.; Chen, F.; Xiao, B.; Tang, A.; Zhou, E. Polymers 2017, 9, 516.
[22] (a) Roncali, J. Acc. Chem. Res. 2009, 42, 1719.
(b) Li, Y.; Guo, Q.; Li, Z.; Pei, J.; Tian, W. Energy Environ. Sci. 2010, 3, 1427.
(c) Walker, B.; Kim, C.; Nguyen, T.-Q. Chem. Mater. 2011, 23, 470.
(d) Mishra, A.; Bauerle, P. Angew. Chem., Int. Ed. 2012, 51, 2020.
[23] Liang, L.; Wang, J.-T.; Xiang, X.; Ling, J.; Zhao, F.-G.; Li, W.-S. J. Mater. Chem. A 2014, 2, 15396.
[24] van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646.
[25] He, C.-Y.; Wu, C.-Z.; Zhu, Y.-L.; Zhang, X. Chem. Sci. 2014, 5, 1317.
[26] Mei, C.-Y.; Liang, L.; Zhao, F.-G.; Wang, J.-T.; Yu, L.-F.; Li, Y.-X.; Li, W.-S. Macromolecules 2013, 46, 7920.
[27] (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
(b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
(d) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[28] (a) Hohenberg. P.; Kohn, W.; Phys. Rev. 1964, 136, B864(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B:Condens. Matter Mater. Phys. 1988, 37, 785.
[29] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian, Inc., Wallingford CT, 2004.
[30] Wang, J.-L.; Chang, Z.-F.; Song, X.-X.; Liu, K.-K.; Jing, L.-M. J. Mater. Chem. 2015, 3, 9849.
/
〈 |
|
〉 |