检测活性氮/活性氧的分子荧光探针
收稿日期: 2018-10-12
修回日期: 2018-11-02
网络出版日期: 2018-11-30
基金资助
国家自然科学基金(No.21305079)资助项目.
Molecular Fluorescence Probe for Detecting Reactive Nitrogen/Reactive Oxygen
Received date: 2018-10-12
Revised date: 2018-11-02
Online published: 2018-11-30
Supported by
Project supported by the National Natural Science Foundation of China (No. 21305079).
活性氮和活性氧是具有强生物活性的化学物质.在人体细胞中,由于酶促或非酶促过程均可生成过氧化物,该物种的异常水平会引起氧化损伤与衰老和各种疾病,如心血管疾病、神经性疾病、阿尔茨海默病、帕金森病甚至癌症.因此,发展选择性识别和高灵敏度的分子荧光探针,实现活性氮或活性氧的有效检测具有重要意义.分子荧光探针检测法与成像技术具有灵敏度高、选择性强、损伤性小和细胞相容性好等优点,并在阐述活性氮和活性氧的病理生理过程中起到重要作用,在生物和医学等领域应用广泛.然而,由于活性氮和活性氧自身的特殊性而存在许多难题,例如反应活性高、存在周期短等一直困扰研究人员.着重综述了近年来发展的分子荧光探针用于活性氮和活性氧的检测及细胞成像工作的研究进展,提出进一步构建新型分子荧光探针用于活性氮和活性氧检测面临的挑战、未来发展方向及展望.
矫春鹏 , 刘媛媛 , 路文娟 , 张平平 , 王延风 . 检测活性氮/活性氧的分子荧光探针[J]. 有机化学, 2019 , 39(3) : 591 -616 . DOI: 10.6023/cjoc201810013
Reactive nitrogen and reactive oxygen are chemical substances with strong biological activity. In human cells, peroxides can be generated due to enzymatic or non-enzymatic processes. Abnormal levels of peroxide can cause oxidative damage and aging and various diseases such as cardiovascular disease, neurological diseases, Alzheimer's disease, Parkinson's disease and even cancer. In order to effectively cure these diseases, health workers must find the source of the problem. Currently, there is no better way to detect reactive oxygen species and reactive nitrogen. Fluorescence spectrometry in recent years becomes the preferred method for the majority of researchers for detecting active oxygen and reactive nitrogen. Therefore, the development of selective recognition and high sensitivity molecular fluorescent probes to achieve effective detection of reactive nitrogen and reactive oxygen species is of great significance. On one hand, molecular fluorescent probe detecting and imaging technology has excellent characteristics such as high sensitivity, strong selectivity, small damage and good cell compatibility. On the other hand, fluorescent probes play an important role in the pathophysiological process of reactive nitrogen and reactive oxygen species. Therefore, the fluorescent probe method is widely used in the fields of biology and medicine. However, due to the inherent specificity of reactive nitrogen and reactive oxygen species, it has become an urgent problem for researchers, such as high reactivity, short cycle, etc. In order to overcome the shortcomings of fluorescent probe analysis, researchers are constantly striving to find better active fluorescent probes for the detection of reactive nitrogen and reactive oxygen species. Recent evolutions in the development of molecular fluorescent probes for the detection of active nitrogen and reactive oxygen species and cell imaging work are reviewed. Finally, a new type of molecular fluorescent probe is proposed to be used for the challenge of active nitrogen and active oxygen detection, and the future development direction and prospect.
[1] Abdel-Fattah, M. M.; Messiha, B. A.; Salama, A. A. Pharmacology 2015, 96, 167.
[2] Hernandez-Barrera, A.; Velarde-Buendia, A.; Zepeda, I.; Sanchez, F.; Quinto, C.; Sanchez-Lopez, R.; Cheung, A. Y.; Wu, H. M.; Cardenas, L. Sensors (Basel) 2015, 15, 855.
[3] Hu, J. J.; Wong, N. K.; Ye, S.; Chen, X.; Lu, M. Y.; Zhao, A. Q.; Guo, Y.; Ma, A. C.; Leung, A. Y.; Shen, J.; Yang, D. J. Am. Chem. Soc. 2015, 137, 6837.
[4] Hu, Q.; Gao, M.; Feng, G.; Liu, B. Angew. Chem., Int. Ed. 2014, 53, 14225.
[5] Huang, Y.; Yu, F.; Wang, J.; Chen, L. Anal. Chem. 2016, 88, 4122.
[6] Kavok, N. S.; Averchenko, K. A.; Klochkov, V. K.; Yefimova, S. L.; Malyukin, Y. V. Eur. Phys. J. E:Soft Matter Biol. Phys. 2014, 37, 127.
[7] Kim, D.; Kim, G.; Nam, S. J.; Yin, J.; Yoon, J. Sci. Rep. 2015, 5, 8488.
[8] Li, Y.; Li, J.; Li, S.; Li, Y.; Wang, X.; Liu, B.; Fu, Q.; Ma, S. Toxicol. Appl. Pharmacol. 2015, 286, 53.
[9] Zhang, J.; Bao, X.; Zhou, J.; Peng, F.; Ren, H.; Dong, X.; Zhao, W. Biosens. Bioelectron. 2016, 85, 164.
[10] Zhang, J.; Huang, L. L.; Liang, X. J.; Wang, Y.; Duan, N.; Xiang, X. H.; Shu, S. S.; Guo, T. T.; Yang, L.; Tang, X. J. South. Med. Univ. 2016, 36, 833.
[11] Suzuki, N.; Kojima, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T. J. Biol. Chem. 2002, 277, 47.
[12] Liu, Q.; Xue, L.; Zhu, D. J.; Li, G. P.; Jiang, H. Chin. Chem. Lett. 2014, 25, 19.
[13] Dong, X.; Heo, C. H.; Chen, S.; Kim, H. M.; Liu, Z. Anal. Chem. 2014, 86, 308.
[14] Vegesna, G. K.; Sripathi, S. R.; Zhang, J.; Zhu, S.; He, W.; Luo, F. T.; Jahng, W. J.; Frost, M.; Liu, H. ACS Appl. Mater. Interfaces 2013, 5, 4107.
[15] Wang, M.; Xu, Z.; Wang, X.; Cui, J. Dyes Pigm. 2013, 96, 333.
[16] Feng, W.; Qiao, Q. L.; Leng, S.; Miao, L.; Yin, W. T.; Wang, L. Q.; Xu, Z. C. Chin. Chem. Lett. 2016, 27, 1554.
[17] Wu, C. M.; Chen, Y. H.; Dayananda, K.; Shiue, T. W.; Hung, C. H.; Liaw, W. F.; Wang, Y. M. Anal. Chim. Acta 2011, 708, 141.
[18] Yu, H.; Zhang, X.; Xiao, Y.; Zou, W.; Wang, L.; Jin, L. Anal. Chem. 2013, 85, 7076.
[19] Ouyang, J.; Hong, H.; Shen, C.; Zhao, Y.; Ouyang, C.; Dong, L.; Zhang, C. Free Radical Biol. Med. 2008, 45, 1426.
[20] Alam, R.; Mistri, T.; Mondal, P.; Das, D.; Mandal, S. K.; Khuda-Bukhsh, A. R.; Ali, M. Dalton Trans. 2014, 43, 2566.
[21] Rout, K. C.; Chaturvedi, S. K.; Khan, R. H.; Mondal, B. Inorg. Chim. Acta 2015, 437, 201.
[22] Chen, L. Y.; Park, J. S.; Wu, D.; Kim, C. H.; Yoon, J. Sens. Actuators, B 2018, 259, 347.
[23] Dai, C. G.; Wang, J. L.; Fu, Y. L.; Zhou, H. P.; Song, Q. H. Anal. Chem. 2017, 89, 10511.
[24] Beltrán, A.; Burguete, M. I.; Abánades, D. R.; Pérez-Sala, D.; Luis, S. V.; Galindo, F. Chem. Commun. 2014, 50, 3579.
[25] Liu, S.; Zhao, J.; Zhang, K.; Yang, L.; Sun, M.; Yu, H.; Yan, Y.; Zhang, Y.; Wu, L.; Wang, S. Analyst 2016, 141, 2296.
[26] Mao, G. J.; Zhang, X. B.; Shi, X. L.; Liu, H. W.; Wu, Y. X.; Zhou, L. Y.; Tan, W.; Yu, R. Q. Chem. Commun. 2014, 50, 5790.
[27] Miao, Z.; Reisz, J. A.; Mitroka, S. M.; Pan, J., Xian, M.; King, S. B. Bioorg. Med. Chem. Lett. 2015, 25, 16.
[28] Liu, C.; Cao, Z.; Wang, Z.; Jia, P.; Liu, J.; Wang, Z.; Han, B.; Huang, X.; Li, X.; Zhu, B.; Zhang, X. Sens. Actuators, B 2015, 220, 727.
[29] Gong, X.; Yang, X. F.; Zhong, Y.; Chen, Y.; Li, Z. Dyes Pigm. 2016, 131, 24
[30] Dong, B. L.; Zheng, K. B.; Tang, Y. H.; Lin, W. Y. J. Mater. Chem. B 2016, 4, 1263.
[31] Ali, F.; Sreedharan, S.; Ashoka, A. H.; Saeed, H. K.; Smythe, C. G. W.; Thomas, J. A.; Das, A. Anal. Chem. 2017, 89, 12087.
[32] Li, H.; Yao, Q.; Fan, J; Long, S.; Du, J.; Peng, X. Anal. Chem. 2018, 90, 4641.
[33] Ren, M. G.; Deng, B. B.; Zhou K.; Lin, W. Y. J. Mater. Chem. B 2017, 5, 1954.
[34] Dong, B. B.; Song, X. Z.; Kong, X. Q.; Wang, C.; Zhang, N.; Lin, W. Y. J. Mater. Chem. B 2017, 5, 5218.
[35] Jing, X. T.; Yu, F. B.; Chen, L. X. Chem. Commun. 2014, 50, 14253.
[36] Rosenthal, J.; Lippard, S. J. J. Am. Chem. Soc. 2010, 132, 5536.
[37] Wrobel, A. T.; Johnstone, T. C.; Deliz, L. A.; Lippard, S. J.; Rivera-Fuentes, P. J. Am. Chem. Soc. 2014, 136, 4697.
[38] Wrobel, A. T.; Johnstone, T. C.; Deliz Liang, A.; Lippard, S. J.; Rivera-Fuentes, P. Chem. Sci. 2015, 6, 4131.
[39] Sun, X.; Kim, G.; Xu, Y.; Yoon, J.; James, T. D. ChemPlusChem 2016, 81, 30.
[40] Lv, H. J.; Ma, R. F.; Zhang, X. T.; Li, M. H., Wang, Y. T.; Wang, S.; Xing, G. W. Tetrahedron 2016, 72, 5495.
[41] Pino, N. W.; Davis Ⅲ, J.; Yu, Z.; Chan, J. J. Am. Che. Soc. 2017, 139, 18476.
[42] Purdey, M. S.; Connaughton, H. S.; Whiting, S.; Schartner, E. P.; Monro, T. M.; Thompson, J. G.; Aitken, R. J.; Abell, A. D. Free Radical Biol. Med. 2015, 81, 69.
[43] Puskullu, M. O.; Shirinzadeh, H.; Nenni, M.; Gurer-Orhan, H.; Suzen, S. J. Enzyme Inhib. Med. Chem. 2016, 31, 121.
[44] Debowska, K.; Debski, D.; Michalowski, B.; Dybala-Defratyka, A.; Wojcik, T.; Michalski, R.; Jakubowska, M.; Selmi, A.; Smulik, R.; Piotrowski, L.; Adamus, J.; Marcinek, A.; Chlopicki, S.; Sikora, A. Chem. Res. Toxicol. 2016, 29, 735.
[45] Palanisamy, S.; Wu, P. Y.; Wu, S. C.; Chen, Y. J.; Tzou, S. C.; Wang, C. H.; Chen, C. Y.; Wang, Y. M. Biosens. Bioelectron. 2017, 91, 849.
[46] Zhu, B. C.; Wu, L.; Wang, Y.; Zhang, M.; Zhao, Z.; Liu, C.; Wang, Z.; Duan, Q.; Jia, P. Sens. Actuators, B 2018, 259, 797.
[47] Zhou, X.; Kwon, Y.; Kim, G.; Ryu, J. H.; Yoon, J. Biosens. Bioelectron. 2015, 64, 285.
[48] Shen, Y.; Zhang, X.; Zhang, Y.; Li, H.; Dai, L.; Peng, X.; Peng, Z.; Xie, Y. Anal. Chim. Acta 2018, 1014, 71.
[49] Hou, J. T.; Yang, J.; Li, K.; Liao, Y. X.; Yu, K. K.; Xie, Y. M.; Yu, X. Q. Chem. Commun. 2014, 50, 9947.
[50] Sun, C.; Du, W.; Wang, P.; Wu, Y.; Wang, B.; Wang, J.; Xie, W. Biochem. Biophys. Res. Commun. 2017, 494, 518.
[51] Yu, F.; Li, P.; Wang, B.; Han, K. L. J. Am. Chem. Soc. 2013, 135, 7674.
[52] Li, Z. H.; Liu, R.; Tan, Z. L.; He, L.; Lu, Z. L.; Gong, B. ACS Sens. 2017, 2, 501.
[53] Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y. T. J. Am. Chem. Soc. 2017, 139, 285.
[54] Lin, K. K.; Wu, S. C.; Hsu, K. M.; Hung, C. H.; Liaw, W. F.; Wang, Y. M. Org. Lett. 2013, 15, 4242.
[55] Sun, X.; Xu, Q.; Kim, G.; Flower, S. E.; Lowe, J. P.; Yoon, J.; Fossey, J. S.; Qian, X.; Bull, S. D.; James, T. D. Chem. Sci. 2014, 5, 3368.
[56] Li, H. Y.; Li, X. H.; Wu, X. F.; Shi, W.; Ma, H. M. Anal. Chem. 2017, 89, 5519.
[57] Zhu, B. C.; Zhang, M.; Wu, L.; Zhao, Z.; Liu, C.; Wang, Z.; Duan, Q.; Wang, Y.; Jia, P. Sens. Actuators, B 2018, 257, 436.
[58] Wolff, I. A.; Wasserman, A. E. Science 1972, 177, 15.
[59] Adarsh, N.; Shanmugasundaram, M.; Ramaiah, D. Anal. Chem. 2013, 85, 10008.
[60] Zhang, J.; Pan, F. C.; Jin, Y.; Wang, N. N.; He, J.; Zhang, W. J.; Zhao, W. L. Dyes Pigm. 2018, 74, 525.
[61] Yan, Y.; Krishnakumar, S.; Yu, H.; Ramishetti, S.; Deng, L. W.; Wang, S. H.; Huang, L.; Huang, D. J. J. Am. Chem. Soc. 2013, 135, 5312.
[62] Chen, J. B.; Li, B.; Xiong, Y. Sens. Actuators, B 2017, 255, 275.
[63] Zuo, L.; Diaz, P. T.; Chien, M. T.; Roberts, W. J.; Kishek, J.; Best, T. M.; Wagner, P. D. PLoS One 2014, 9, e109884.
[64] Zuo, L.; Pannell, B. K.; Re, A. T.; Best, T. M.; Wagner, P. D. Am. J. Physiol.:Cell Physiol. 2015, 309, C759.
[65] Chen, W. C.; Venkatesan, P.; Wu, S. P. New J. Chem. 2015, 39, 6892.
[66] Zang, L.; Liang, C.; Wang, Y.; Bu, W.; Sun, H.; Jiang, S. Sens. Actuators, B 2015, 211, 164.
[67] Wu, G. F.; Zeng, F.; Wu, S. Z. Anal. Methods 2013, 5, 5589.
[68] Chen, Y.; Wei, T.; Zhang, Z.; Zhang, W.; Lv, J.; Chen, T.; Chi, B.; Wang, F.; Chen, X. Chin. Chem. Lett. 2017, 28, 1957.
[69] Lv, J.; Chen, Y.; Wang, F.; Wei, T.; Zhang, Z.; Qiang, J.; Chen, X. Dyes Pigm. 2018, 148, 353.
[70] Xi, L. L.; Guo, X. F.; Wang, C. L.; Wu, W. L.; Huang, M. F.; Miao, J. Y.; Zhao, B. X. Senso. Actuators, B 2018, 255, 666.
[71] Sun, M.; Yu, H.; Zhu, H.; Ma, F.; Zhang, S.; Huang, D.; Wang, S. Anal. Chem., 2014, 86, 671.
[72] Xu, J.; Yuan, H.; Qin, C.; Zeng, L.; Bao, G. M. RSC Adv. 2016, 6, 107525.
[73] Xing, P.; Feng, Y.; Niu, Y.; Li, Q.; Zhang, Z.; Dong, L.; Wang, C. Chem.-Eur. J. 2018, 24, 5748.
[74] Sun, M.; Yu, H.; Zhu, H.; Ma, F.; Zhang, S.; Huang, D.; Wang, S. Anal. Chem. 2014, 86, 671.
[75] Song, X.; Dong, B.; Kong, X.; Wang, C.; Zhang, N.; Lin, W. Spectrochim. Acta, Part A 2018, 188, 394.
[76] Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. J. Am. Chem. Soc. 2014, 136, 12820.
[77] Xu, Q.; Lee, K. A.; Lee, S.; Lee, K. M.; Lee, W. J.; Yoon, J. J. Am. Chem. Soc. 2013, 135, 9944.
[78] Zhou, J.; Li, L. H.; Shi, W.; Gao, X. H.; Li, X. H.; Ma, H. M. Chem. Sci. 2015, 6, 4884.
[79] Chen, S. M.; Lu, J. X; Sun, C. D.; Ma, H. M. Analyst 2010, 135, 577.
[80] Jia, J.; Ma, H. M. Sci. Bull. 2011, 56, 3266.
[81] Zhang, Z.; Deng, C.; Meng, L.; Zheng, Y.; Yan, X. Anal. Methods 2015, 7, 107.
[82] Zhang, Z.; Zou, Y.; Deng, C.; Meng, L. Luminescence 2016, 31, 997.
[83] Li, L.; Wang, S.; Lan, H.; Gong, G.; Zhu, Y.; Tse, Y. C.; Wong, K. M. C. ChemistryOpen 2018, 7, 136.
[84] Zhang, Y. R.; Zhao, Z. M.; Su, L.; Miao, J. Y.; Zhao, B. X. RSC Adv. 2016, 6, 17059.
[85] Shen, S. L.; Ning, J. Y.; Zhang, X. F.; Miao, J. Y.; Zhao, B. X. Sens. Actuators, B 2017, 244, 907.
[86] Zhang, Y. R.; Meng, N.; Miao, J. Y.; Zhao, B. X. Chemistry 2015, 21, 19058.
[87] Zhang, Y. R.; Zhao, Z. M.; Su, L.; Miao, J. Y.; Zhao, B. X. RSC Adv. 2016, 6, 17059.
[88] Deng, B.; Ren, M.; Kong, X.; Zhou, K.; Lin, W. Sens. Actuators, B 2018, 255, 963.
[89] Vedamalai, M.; Kedaria, D.; Vasita, R.; Gupta, I. Sens. Actuators, B 2018, 263, 137.
[90] Zhang, B.; Yang, X.; Zhang, R.; Liu, Y.; Ren, X.; Xian, M.; Ye, Y.; Zhao, Y. Anal. Chem. 2017, 89, 10384.
[91] Li, G. P.; Zhu, D. J.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 2002.
[92] Mulay, S. V.; Choi, M.; Jang, Y. J.; Kim, Y.; Jon, S.; Churchill, D. G. Chemistry 2016, 22, 9642.
[93] Mulay, S. V.; Yudhistira, T.; Choi, M.; Kim, Y.; Kim, J.; Jang, Y. J.; Jon, S.; Churchill, D. G. Chem.-Asian J. 2016, 11, 3598.
[94] Chen, P.; Zheng, Z.; Zhu, Y.; Dong, Y.; Wang, F.; Liang, G. Anal. Chem. 2017, 89, 5693.
[95] Shu, W.; Jia, P.; Chen, X.; Li, X.; Huo, Y.; Liu, F.; Wang, Z.; Liu, C.; Zhu, B.; Yan, L.; Du, B. RSC Adv. 2016, 6, 64315.
[96] Pan, Y.; Huang, J.; Han, Y. Tetrahedron Lett. 2017, 58, 1301.
[97] Zhang, P.; Wang, H.; Hong, Y.; Yu, M.; Zeng, R.; Long, Y.; Chen, J. Biosens. Bioelectron. 2018, 99, 318.
[98] Zhang, P.; Wang, H.; Hong, Y.; Yu, M.; Zeng, R.; Long, Y.; Chen, J. Biosens. Bioelectron. 2018, 99, 318.
[99] Li, J.; Yin, C.; Huo, F.; Xiong, K.; Chao, J.; Zhang, Y. Sens. Actuators, B 2016, 231, 547.
[100] Lo, L. C.; Chu, C. Y. Chem. Commun. 2003, 21, 2728.
[101] Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2004, 126, 15392.
[102] Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 4596.
[103] Xu, J.; Li, Q.; Yue, Y.; Guo, Y.; Shao, S. Biosens. Bioelectron. 2014, 56, 58.
[104] Xu, J.; Zhang, Y.; Yu, H.; Gao, X.; Shao, S. Anal. Chem. 2016, 88, 1455.
[105] Zhang, W.; Liu, W.; Li, P.; Huang, F.; Wang, H.; Tang, B. Anal. Chem. 2015, 87, 9825.
[106] Ren, M.; Deng, B.; Zhou, K.; Kong, X.; Wang, J. Y.; Lin, W. Anal. Chem. 2017, 89, 552.
[107] Carroll, V.; Michel, B. W.; Blecha, J.; VanBrocklin, H.; Keshari, K.; Wilson, D.; Chang, C. J. J. Am. Chem. Soc. 2014, 136, 14742.
[108] Shen, Y.; Zhang, X.; Zhang, Y.; Wu, Y.; Zhang, C.; Chen, Y.; Jin, J.; Li, H. Sens. Actuators, B 2018, 255, 42.
[109] Li, G.; Zhu, D.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 924.
[110] Qian, Y. Y.; Xue, L.; Hu, D. X.; Li, G. P.; Jiang, H. Dyes Pigm. 2012, 95, 373.
[111] Zhu, D.; Li, G.; Xue, L.; Jiang, H. Org. Biomol. Chem. 2013, 11, 4577.
[112] Zhu, D.; Xue, L.; Li, G.; Che, Y.; Jiang, H. Org. Chem. Front. 2014, 1, 501.
[113] Li, G.; Zhu, D.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 5020.
[114] Zhu, D.; Xue, L.; Li, G.; Jiang, H. Sens. Actuators, B 2016, 222, 419.
[115] Wu, G.; Zeng, F.; Yu, C.; Wu, S.; Li, W. J. Mater. Chem. B 2014, 2, 8528.
[116] Lim, C. S.; Cho, M. K.; Park, M. Y.; Kim, H. M. ChemistryOpen 2018, 7, 53.
[117] Zhang, K.; Wu, W.; Li, Y.; Sun, M.; Yu, H.; Wong, M. S. RSC Adv. 2016, 6, 115298.
[118] Gao, C.; Tian, Y.; Zhang, R.; Jing, J.; Zhang, X. Anal. Chem. 2017, 89, 12945.
[119] Peng, J.; Hou, X.; Zeng, F.; Wu, S. Biosens. Bioelectron. 2017, 94, 278.
[120] Abo, M.; Minakami, R.; Miyano, K.; Kamiya, M.; Nagano, T.; Urano, Y.; Sumimoto, H. Anal. Chem. 2014, 86, 5983.
[121] Reja, S. I.; Gupta, M.; Gupta, N.; Bhalla, V.; Ohri, P.; Kaur, G.; Kumar, M. Chem. Commun. 2017, 53, 3701.
[122] Liao, Y. X.; Li, K.; Wu, M. Y.; Wu, T.; Yu, X. Q. Org. Biomol. Chem. 2014, 12, 3004.
[123] Shanmugapriya, J.; Rajaguru, K.; Sivaraman, G.; Muthusubramanian, S.; Bhuvanesh, N. RSC Adv. 2016, 6, 85838.
[124] Zhuang, Z.; Yang, Q.; Zhang, Z.; Zhang, Q.; Zheng, G.; Zhan, F. J. Photochem. Photobiol., A 2017, 344, 8.
[125] Zhang, K. M.; Dou, W.; Li, P. X.; Shen, R.; Ru, J. X.; Liu, W.; Cui, Y. M.; Chen, C. Y.; Liu, W. S.; Bai, D. C. Biosens. Bioelectron. 2015, 64, 542.
[126] Yang, Y.; Yang, D.; Yang, D.; Jia, R.; Ding, G. Nephron. Exp. Nephrol. 2014, 128, 30.
[127] Zeng, L.; Xia, T.; Hu, W.; Chen, S.; Chi, S.; Lei, Y.; Liu, Z. Anal. Chem. 2018, 90, 1317.
[128] Bai, X.; Huang, Y.; Lu, M.; Yang, D. Angew. Chem., Int. Ed. 2017, 56, 12873.
[129] Kim, M.; Ko, S. K.; Kim, H.; Shin, I.; Tae, J. Chem. Commun. 2013, 49, 7959.
[130] Lu, D.; Zhou, L.; Wang, R.; Zhang, X.-B.; He, L.; Zhang, J.; Hu, X.; Tan, W. Sens. Actuators, B 2017, 250, 259.
[131] Gao, X.; Feng, G.; Manghnani, P. N.; Hu, F.; Jiang, N.; Liu, J.; Liu, B.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2017, 53, 1653.
[132] Zhang, Q.; Zhu, Z.; Zheng, Y.; Cheng, J.; Zhang, N.; Long, Y. T.; Zheng, J.; Qian, X.; Yang, Y. J. Am. Chem. Soc. 2012, 134, 18479.
[133] Sivaraman, G.; Anand, T.; Chellappa, D. ChemPlusChem 2014, 79, 1761.
[134] Zhang, R.; Zhao, J.; Han, G.; Liu, Z.; Liu, C.; Zhang, C.; Han, M. Y. J. Am. Chem. Soc. 2016, 138, 3769.
[135] Yu, F.; Gao, M.; Li, M.; Chen, L. Biomaterials 2015, 63, 93.
[136] Ong, J. X.; Pang, V. Y. T.; Tng, L. M.; Ang, W. H. Chemistry 2018, 24, 1870.
/
〈 |
|
〉 |