综述与进展

金属催化剂催化醇和胺直接偶联制备亚胺的研究进展

  • 王辉 ,
  • 黄龙江
展开
  • 青岛科技大学化工学院 青岛 266042

收稿日期: 2018-08-30

  修回日期: 2018-11-14

  网络出版日期: 2018-12-05

基金资助

山东省高等教育科技计划(No.J16LC13)资助项目.

Progress in Imine Formation from Direct Coupling of Alcohols and Amines Catalyzed by Metal Catalysts

  • Wang Hui ,
  • Huang Longjiang
Expand
  • College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042

Received date: 2018-08-30

  Revised date: 2018-11-14

  Online published: 2018-12-05

Supported by

Project supported by the Higher Educational Science and Technology Program of Shandong Province (No. J16LC13).

摘要

亚胺又称席夫碱,广泛存在于天然产物、生物活性化合物和药物等分子结构中.亚胺中的C=N双键具有较高的反应活性,可作为氮源应用于不同类型的反应中,因此在生物、医药、染料和材料等方面都有重要应用.金属催化剂催化醇胺直接偶联制备亚胺因具有原子经济性高、绿色环保等优点,近年来获得了广泛关注并取得了重要进展.系统地总结和评述了近年来金属催化剂催化醇和胺直接偶联制备亚胺反应的研究进展,并对其未来发展方向进行了展望.

关键词: 亚胺; ; ; 金属催化

本文引用格式

王辉 , 黄龙江 . 金属催化剂催化醇和胺直接偶联制备亚胺的研究进展[J]. 有机化学, 2019 , 39(4) : 883 -902 . DOI: 10.6023/cjoc201808039

Abstract

Imines are very important class of compounds and have been widely utilized in fine chemicals, pharmaceuticals and chemical industry. The C=N double bond in imine is an important nitrogen source in different types of reactions due to its high reactive activity. Due to its high atom economy, catalytic direct coupling of alcohols and amines to imines based on metal catalysts has attracted much attention and maken great progress in recent years. In this paper, the advances in direct coupling of alcohols and amines to imines catalyzed by metal catalysts are reviewed.

参考文献

[1] Marques, C. S.; Burke, A. J. ChemInform 2011, 3, 635.
[2] Bayrak, H.; Demirbas, A.; Karaoglu, S. A.; Demirbas, N. Eur. J. Med. Chem. 2009, 44, 1057.
[3] Gawronski, J.; Wascinska, N.; Gajewy, J. Chem. Rev. 2008, 108, 5227.
[4] Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
[5] And, S. K.; Ishitani, H. Chem. Rev. 1999, 99, 1069.
[6] Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 2011, 47, 632.
[7] Marques, C. S.; Burke, A. J. ChemCatChem 2011, 3, 635.
[8] Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 4916.
[9] Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. ChemInform 2010, 33, 9692.
[10] Nieto, S.; Dragna, J. M.; Anslyn, E. V. Chem.-Eur. J. 2010, 16, 227.
[11] Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. ChemCatChem 2010, 2, 1438.
[12] Nakajima, R.; Ogino, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2010, 132, 1236.
[13] Hadjipavlou-Litina, D. J.; Geronikaki, A. A. Drug Des. Discovery 1998, 15, 199.
[14] Akhmetova, V. R.; Khabibullina, G. R.; Rakhimova, E. B. Mol. Diversity 2010, 14, 463.
[15] Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, Jørgensen, K. A. Chem. Commun. 2011, 47, 632.
[16] Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
[17] Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Chem. Rev. 2011, 111, 1713.
[18] Marques, C. S.; Burke, A. J. ChemCatChem. 2011, 3, 635.
[19] Nieto, S.; Dragna, J. M.; Anslyn, E. V. Chem.-Eur. J. 2010, 16, 227.
[20] Dhakshinamoorthy, A.; Alvaro, M. ChemCatChem 2010, 2, 1438.
[21] Aschwanden, L.; Mallat, T.; Maciejewski, M.; Krumeich, F.; Baiker, A. ChemCatChem 2010, 2, 666.
[22] Min, S. K.; Kim, S.; Park, S.; Park, S.; Bosco, W.; Chidrala, R. K.; Park, J. J. Org. Chem. 2009, 74, 2877.
[23] Jiang, L.; Jin, L. L.; Tian, H. W.; Yuan, X. Q.; Yu, X. C.; Xu, Q. Chem. Commun. 2011, 47, 10833.
[24] Chen, G. J.; Ma, H. C.; Xin, W. L.; Li, X. B.; Jin, F. Z.; Wang, J. S.; Liu, M. Y.; Dong, Y. B. Inorg. Chem. 2017, 56, 654.
[25] Tian, H. W.; Yu, X. C.; Li, Q.; Wang, J. X.; Xu, Q. Adv. Synth. Catal. 2012, 354, 2671.
[26] Kang, Q.; Zhang, Y. G. Green Chem. 2012, 43, 1016.
[27] Bai, L.; Dang, Z. RSC Adv. 2015, 5, 10341.
[28] Darapanani, C. M.; Arghya, S.; Galia, M. J. Catal. 2017, 355, 139.
[29] Wei, Y. G.; Yu, H.; Zhai, Y. Y.; Dai, G. Y.; Ru, S.; Han, S. Chem.-Eur. J. 2017, 23, 13883.
[30] And, L. B.; Taylor R, J. K. Org. Lett. 2001, 4, 1637.
[31] Sithambaram, S.; Kumar, R.; Son, Y. C.; Steven, L. J. Catal. 2008, 253, 269.
[32] Mondal, J.; Borah, P.; Sreejith, S.; Nguyen, K. T.; Han, X. G.; Ma, X.; Zhao, Y. L. ChemCatChem 2014, 6, 3518.
[33] Chen, B.; Li, J.; Dai, W.; Wang, L. Y.; Gao, S. Green Chem. 2014, 16, 3328.
[34] Zhang, E, L.; Tian, H. W.; Xu, S. D.; Yu, X. C.; Xu, Q. Org. Lett. 2013, 15, 2704.
[35] Geng, L. L.; Song, J. L.; Zheng, B.; Wu, S. J.; Zhang, W. X.; Jia, M. J.; Liu, G. Chin. J. Catal. 2016, 37, 1451.
[36] Sindhuja, E.; Ramesh, R. Tetrahedron Lett. 2014, 55, 5504.
[37] Sun, H.; Su, F. Z.; Ni, J.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem., Int. Ed. 2009, 48, 4390.
[38] Kegnæs, S.; Mielby, J.; Mentzel, U. V.; Christensen, C. H.; Riisager, A. Green Chem. 2010, 12, 1437.
[39] Liu, P.; Li, C.; Hensen, E. J. Chem.-Eur. J. 2012, 18, 12122.
[40] Soulé, J. F.; Miyamura, H.; Kobayashi, S. Chem. Commun. 2013, 49, 355.
[41] Huang, R.; Yang, Y.; Wang, D. S.; Zhang, L.; Wang, D. W. Org. Chem. Front. 2017, 5, 203.
[42] Han, L.; Xing, P.; Jiang, B. Org. Lett. 2014, 16, 3428.
[43] Mielby, J.; Poreddy, R.; Engelbrekt, C.; Kegnæs, S. Chin. J. Catal. 2014, 35, 670.
[44] Zhang, G. Q.; Hanson, S. K. Org. Lett. 2013, 15, 650.
[45] Sun, Y. W.; Lu, X. H.; Wei, X. L.; Zhou, D.; Xia, Q. H. Catal. Commun. 2014, 43, 213.
[46] Midya, S. P.; Pitchaimani, J.; Landge, V. G.; Madhu, V.; Ekam-baram, B. Catal. Sci. Technol. 2018, 8, 3469.
[47] Xu, C.; Lai, Goh, L. Y.; Pullarkat, S. A. Organometallics. 2011, 30, 6499.
[48] Chang, Y. H.; Tanigawa, I.; Takeuchi, K.; Taguchi, H.; Ozawa, F. Eur. J. Inorg. Chem. 2016, 5, 754.
[49] Gnanaprakasam, B.; Zhang, J.; Milstein, D. Angew. Chem., Int. Ed. 2010, 49, 1468.
[50] Cano, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2011, 76, 5547.
[51] Maggi, A.; Madsen, R. Organometallics 2012, 31, 451.
[52] Jared, W. R.; Sara, A. M.; Simon, D. P.; Jennifer, M. S. Org. Biomol. Chem. 2012, 10, 1746.
[53] Musa, S.; Fronton, S.; Vaccaro, L.; Gelman, D. Organometallics 2013, 32, 3069.
[54] Saha, B.; Daw, P.; Sengupta, G.; Rahaman, S. M.; Bera, J. K. Chem.-Eur. J. 2014, 20, 6542.
[55] Oldenhuis, N. J.; Dong, V. M.; Guan. Z. B. Tetrahedron 2014, 70, 4213.
[56] Higuchi, T.; Tagawa, R.; Iimuro, A.; Akiyama, S.; Nagae, H.; Mashima, K. Chem.-Eur. J. 2017, 23, 12795.
[57] Yu, X. J.; Li, Y. Q.; Fu, H. Y.; Zheng, X. L.; Chen, H.; Li, R. X. Appl. Organomet. Chem. 2018, 32, 4277.
[58] Shiraishi, Y.; Ikeda, M.; Tsukamoto, D.; Tanaka, S.; Hirai, T. Chem. Commun. 2011, 47, 4811.
[59] Pérez, J. M.; Cano, R.; Yus, M.; Ramón, D. J. Eur. J. Org. Chem. 2012, 24, 4548.
[60] Tang, L.; Sun, H. Y.; Li, Y. F.; Zha, Z. G.; Wang, Z. Y. Green Chem. 2012, 14, 3423.
[61] Wang, H.; Zhang, J.; Cui, Y. M.; Yang, K. F.; Zheng, Z. J.; Xu, L. W. RSC. Adv. 2014, 4, 34681.
[62] Bain, J.; Cho, P.; Voutchkova-Kostal, A. Green Chem. 2015, 17, 2271.
[63] Jaiswal, G.; Landge, V. G.; Jagadeesan, D.; Balaraman, E. Green Chem. 2016, 47, 3232.
[64] Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon L, J. W.; David, Y. B.; Jalapa N, A. E.; Milstein, D. J. Am. Chem. Soc. 2016, 138, 4298.
[65] Mastalir, M.; Glatz, M.; Gorgas, N.; Stçger, B.; Pittenauer, E.; Allmaier, G.; Veiros, L. F.; Kirchner, K. Chem.-Eur. J. 2016, 22, 12316.
[66] Fertig, R.; Irrgang, T.; Freitag, F.; Zander, J.; Kempe, R. ACS Catal. 2018, 9, 8525.
[67] Esteruelas, M. A.; Honczek, N.; Valencia, M.; Oñate, E.; Oliván, M. Organometallics 2011, 30, 2468.
[68] Madsen, R.; Azizi, K. ChemCatChem 2018, 53, 1.

文章导航

/