钯催化烯烃的分子内氟芳基化反应
收稿日期: 2018-10-20
修回日期: 2018-12-03
网络出版日期: 2018-12-05
基金资助
国家重点基础研究发展计划(973计划,No.2015CB856600)、国家自然科学基金(Nos.21532009,21672236,21761142010,21790330)、上海市科学技术委员会(Nos.17QA1405200和17JC1401200)、中国科学院(Nos.XDB20000000,QYZDJSSW-SLH055)和青年创新促进会(No.2018292)资助项目.
Palladium-Catalyzed Intramolecular Fluoroarylation of Alkenes
Received date: 2018-10-20
Revised date: 2018-12-03
Online published: 2018-12-05
Supported by
Project supported by he National Key R&D Program of China (973 Program, No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21532009, 21672236, 21761142010, 21790330) and the Science Technology Commission of the Shanghai Municipality (Nos. 17QA1405200, 17JC1401200), and the Chinese Academy Sciences (Nos. XDB20000000, QYZDJSSW-SLH055) and the Youth Innovation Promotion Association (No.2018292).
杨文铖 , 亓晓旭 , 陈品红 , 刘国生 . 钯催化烯烃的分子内氟芳基化反应[J]. 有机化学, 2019 , 39(1) : 122 -128 . DOI: 10.6023/cjoc201810026
A novel palladium-catalyzed intramolecular fluoroarylation of alkenes has been developed, in which ArIF2 was employed as fluorine source as well as I(Ⅲ) reagent to activate olefin, to deliver the fluoroarylation products from 4-aryl- 1-olefins in moderate to good yields. The current transformation presents a convenient method to provide fluorotetralins and fluorochromanes under mild conditions from alkenes tethered arenes.
Key words: palladium-catalyzed; alkenes; fluoroarylation; tetralin
[1] (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Wang, J.; Sánchez-Rosellyó, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[2] For reviews, see:(a) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem. Soc. Rev. 2010, 39, 558.
(b) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
(c) Liu, G. Org. Biomol. Chem. 2012, 6243.
(d) Wolstenhulme, J. R.; Gouverneur, V. Acc. Chem. Res. 2014, 47, 3560.
(e) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(f) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
[3] For the selected examples on aminofluorination, see:(a) Wu. T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.
(b) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y. Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
(c) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 2469.
(d) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640.
(e) Huang, H.-T.; Lacy, T. C.; Blachut, B.; Ortiz Jr, G. X.; Wang, Q. Org. Lett. 2013, 15, 1818.
(f) Li, Z.; Zhang, C.; Zhu, L.; Liu, C.; Li, C. Org. Chem. Front. 2014, 1, 100.
(g) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079.
(h) Cui, J.; Jia, Q.; Feng, R.-Z.; Liu, S.-S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442.
(i) Lu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu, H. Org. Lett. 2014, 16, 2912.
(j) Yuan, W.; Szabo, K. J. Angew. Chem. Int. Ed. 2015, 54, 8533.
(k) Lu, D.-F.; Zhu, C.-L.; Sears, J. D.; Xu, H. J. Am. Chem. Soc. 2016, 138, 11360.
[4] For selected examples on oxyfluorination, see:(a) Wilkinson, S. C.; Lozano, O.; Schuler, M.; Pacheco, M. C.; Salmon, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 7083.
(b) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.
(c) Peng, H.; Yuan, Z.; Wang, H.-Y., Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.
(d) Egami, H.; Asada, J.; Sato, K.; Hashizume, D.; Kawato, Y.; Hamashima, Y. J. Am. Chem. Soc. 2015, 137, 10132.
(e) Geary, G. C.; Hope, E. G.; Stuart, A. M. Angew. Chem., Int. Ed. 2015, 54, 14911.
[5] For selected examples on carbofluorination, see:(a) Cochrane, N. A.; Nguyen, H.; Gagne, M. R. J. Am. Chem. Soc. 2013, 135, 628.
(b) Zhu, L.; Chen, H.; Wang Z.; Li, C. Org. Chem. Front. 2014, 1, 1299.
(c) Wang, H.; Guo, L.-N.; Duan, X.-H. Chem. Commun. 2014, 50, 7382.
(d) Liu, Z.; Chen, H.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. J. Am. Chem. Soc. 2018, 140, 6169.
[6] Other fluorination of alkenes, see:(a) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.
(b) Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082.
(c) Emer, E.; Pfeifer, L.; Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 4181.
(d) Yuan, Z.; Wang, H.-Y.; Mu, X.; Chen, P.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2468.
(e) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
(f) Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
(g) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. Science 2016, 353, 51.
(h) Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858.
[7] (a) Talbot, E. P. A.; Fernandes, T. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101.
(b) He, Y.; Yang, Z.; Thornbury, R. T.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 12207.
(c) Miró, J.; de Pozo, C.; Toste, F. D.; Fustero, S. Angew. Chem., Int. Ed. 2016, 55, 9045.
(d) Thornbury, R. T.; Saini, V.; Fernandes, T. A.; Santiago, C. B.; Talbot, E. P. A.; Sigman, M. S.; McKenna, J. M.; Toste, F. D. Chem. Sci. 2017, 8, 2890.
[8] Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2017, 56, 9872.
[9] (a) Guo, R.; Yang, H.; Tang, P. Chem. Commun. 2015, 51, 8829.
(b) Kindt, S.; Heinrich, M. R. Chem. Eur. J. 2014, 20, 15344.
[10] Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
[11] (a) Li, M.; Yu, F.; Qi, X.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2016, 55, 13843.
(b) Li, M.; Yu, F.; Chen, P.; Liu, G. J. Org. Chem. 2017, 82, 11682.
(c) Qi, X.; Yu, F.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 12692.
[12] (a) Taniguchi, K.; Nagano, M.; Hattori, K.; Tsubaki, K.; Okitsu, O.; Tabuchi, S. US 5763489, 1998.
(b) Poirier, D. Anticancer Agents Med. Chem. 2009, 9, 642.
[13] Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654.
[14] (a) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658.
(b) Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.; Vallribera, A.; Ujaque, G.; Lledós, A.; Shafir, A. J. Am. Chem. Soc. 2016, 138, 12747.
[15] Liu, R.; Lu, Z.-H.; Hu, X.-H.; Li, J.-L.; Yang, X.-J. Org. Lett. 2015, 17, 1489.
[16] (a) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
(b) Peng, H.; Yuan, Z.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.
[17] Sharma, H.; Santra, S.; Debnath, J.; Antonio, T.; Reith, M.; Dutta, A. Bioorg. Med. Chem. 2014, 22, 311.
[18] Choi, P. J.; Rathwell, D. C. K.; Brimble, M. A. Tetrahedron Lett. 2009, 50, 3245.
[19] Parrish, J. P.; Sudaresan, B.; Jung, K. W. Synth. Commun. 1999, 29, 4423.
[20] Hanamoto,T.; Shindo, K.; Matsuoka, M.; Kiguchi, Y.; Kondo, M. J. Chem. Soc., Perkin Trans. 1 2000, 103.
/
〈 |
|
〉 |