研究论文

钯催化烯烃的分子内氟芳基化反应

  • 杨文铖 ,
  • 亓晓旭 ,
  • 陈品红 ,
  • 刘国生
展开
  • 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 分子合成科学卓越创新中心 上海 200032

收稿日期: 2018-10-20

  修回日期: 2018-12-03

  网络出版日期: 2018-12-05

基金资助

国家重点基础研究发展计划(973计划,No.2015CB856600)、国家自然科学基金(Nos.21532009,21672236,21761142010,21790330)、上海市科学技术委员会(Nos.17QA1405200和17JC1401200)、中国科学院(Nos.XDB20000000,QYZDJSSW-SLH055)和青年创新促进会(No.2018292)资助项目.

Palladium-Catalyzed Intramolecular Fluoroarylation of Alkenes

  • Yang Wencheng ,
  • Qi Xiaoxu ,
  • Chen Pinhong ,
  • Liu Guosheng
Expand
  • State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2018-10-20

  Revised date: 2018-12-03

  Online published: 2018-12-05

Supported by

Project supported by he National Key R&D Program of China (973 Program, No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21532009, 21672236, 21761142010, 21790330) and the Science Technology Commission of the Shanghai Municipality (Nos. 17QA1405200, 17JC1401200), and the Chinese Academy Sciences (Nos. XDB20000000, QYZDJSSW-SLH055) and the Youth Innovation Promotion Association (No.2018292).

摘要

发展了一种钯催化的烯烃分子内氟芳基化反应,以ArIF2作为氟源和亲电试剂来活化烯烃,实现了4-芳基-1-丁烯的氟化关环反应,以中等到良好的收率得到氟芳基化产物.这类反应为从烯基芳烃出发合成氟代四氢萘和氟代色满提供了高效方法.

本文引用格式

杨文铖 , 亓晓旭 , 陈品红 , 刘国生 . 钯催化烯烃的分子内氟芳基化反应[J]. 有机化学, 2019 , 39(1) : 122 -128 . DOI: 10.6023/cjoc201810026

Abstract

A novel palladium-catalyzed intramolecular fluoroarylation of alkenes has been developed, in which ArIF2 was employed as fluorine source as well as I(Ⅲ) reagent to activate olefin, to deliver the fluoroarylation products from 4-aryl- 1-olefins in moderate to good yields. The current transformation presents a convenient method to provide fluorotetralins and fluorochromanes under mild conditions from alkenes tethered arenes.

参考文献

[1] (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Wang, J.; Sánchez-Rosellyó, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[2] For reviews, see:(a) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem. Soc. Rev. 2010, 39, 558.
(b) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
(c) Liu, G. Org. Biomol. Chem. 2012, 6243.
(d) Wolstenhulme, J. R.; Gouverneur, V. Acc. Chem. Res. 2014, 47, 3560.
(e) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(f) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
[3] For the selected examples on aminofluorination, see:(a) Wu. T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.
(b) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y. Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
(c) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 2469.
(d) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640.
(e) Huang, H.-T.; Lacy, T. C.; Blachut, B.; Ortiz Jr, G. X.; Wang, Q. Org. Lett. 2013, 15, 1818.
(f) Li, Z.; Zhang, C.; Zhu, L.; Liu, C.; Li, C. Org. Chem. Front. 2014, 1, 100.
(g) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079.
(h) Cui, J.; Jia, Q.; Feng, R.-Z.; Liu, S.-S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442.
(i) Lu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu, H. Org. Lett. 2014, 16, 2912.
(j) Yuan, W.; Szabo, K. J. Angew. Chem. Int. Ed. 2015, 54, 8533.
(k) Lu, D.-F.; Zhu, C.-L.; Sears, J. D.; Xu, H. J. Am. Chem. Soc. 2016, 138, 11360.
[4] For selected examples on oxyfluorination, see:(a) Wilkinson, S. C.; Lozano, O.; Schuler, M.; Pacheco, M. C.; Salmon, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 7083.
(b) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.
(c) Peng, H.; Yuan, Z.; Wang, H.-Y., Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.
(d) Egami, H.; Asada, J.; Sato, K.; Hashizume, D.; Kawato, Y.; Hamashima, Y. J. Am. Chem. Soc. 2015, 137, 10132.
(e) Geary, G. C.; Hope, E. G.; Stuart, A. M. Angew. Chem., Int. Ed. 2015, 54, 14911.
[5] For selected examples on carbofluorination, see:(a) Cochrane, N. A.; Nguyen, H.; Gagne, M. R. J. Am. Chem. Soc. 2013, 135, 628.
(b) Zhu, L.; Chen, H.; Wang Z.; Li, C. Org. Chem. Front. 2014, 1, 1299.
(c) Wang, H.; Guo, L.-N.; Duan, X.-H. Chem. Commun. 2014, 50, 7382.
(d) Liu, Z.; Chen, H.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. J. Am. Chem. Soc. 2018, 140, 6169.
[6] Other fluorination of alkenes, see:(a) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.
(b) Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082.
(c) Emer, E.; Pfeifer, L.; Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 4181.
(d) Yuan, Z.; Wang, H.-Y.; Mu, X.; Chen, P.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2468.
(e) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
(f) Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
(g) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. Science 2016, 353, 51.
(h) Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858.
[7] (a) Talbot, E. P. A.; Fernandes, T. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101.
(b) He, Y.; Yang, Z.; Thornbury, R. T.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 12207.
(c) Miró, J.; de Pozo, C.; Toste, F. D.; Fustero, S. Angew. Chem., Int. Ed. 2016, 55, 9045.
(d) Thornbury, R. T.; Saini, V.; Fernandes, T. A.; Santiago, C. B.; Talbot, E. P. A.; Sigman, M. S.; McKenna, J. M.; Toste, F. D. Chem. Sci. 2017, 8, 2890.
[8] Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2017, 56, 9872.
[9] (a) Guo, R.; Yang, H.; Tang, P. Chem. Commun. 2015, 51, 8829.
(b) Kindt, S.; Heinrich, M. R. Chem. Eur. J. 2014, 20, 15344.
[10] Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
[11] (a) Li, M.; Yu, F.; Qi, X.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2016, 55, 13843.
(b) Li, M.; Yu, F.; Chen, P.; Liu, G. J. Org. Chem. 2017, 82, 11682.
(c) Qi, X.; Yu, F.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 12692.
[12] (a) Taniguchi, K.; Nagano, M.; Hattori, K.; Tsubaki, K.; Okitsu, O.; Tabuchi, S. US 5763489, 1998.
(b) Poirier, D. Anticancer Agents Med. Chem. 2009, 9, 642.
[13] Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654.
[14] (a) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658.
(b) Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.; Vallribera, A.; Ujaque, G.; Lledós, A.; Shafir, A. J. Am. Chem. Soc. 2016, 138, 12747.
[15] Liu, R.; Lu, Z.-H.; Hu, X.-H.; Li, J.-L.; Yang, X.-J. Org. Lett. 2015, 17, 1489.
[16] (a) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
(b) Peng, H.; Yuan, Z.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.
[17] Sharma, H.; Santra, S.; Debnath, J.; Antonio, T.; Reith, M.; Dutta, A. Bioorg. Med. Chem. 2014, 22, 311.
[18] Choi, P. J.; Rathwell, D. C. K.; Brimble, M. A. Tetrahedron Lett. 2009, 50, 3245.
[19] Parrish, J. P.; Sudaresan, B.; Jung, K. W. Synth. Commun. 1999, 29, 4423.
[20] Hanamoto,T.; Shindo, K.; Matsuoka, M.; Kiguchi, Y.; Kondo, M. J. Chem. Soc., Perkin Trans. 1 2000, 103.

文章导航

/