研究论文

锌介导的炔酰胺串联氧化/卤化反应合成α-卤代酰胺

  • 朱建荣 ,
  • 任小娟 ,
  • 唐飞宇 ,
  • 潘飞 ,
  • 叶龙武
展开
  • a 浙江京新药业股份有限公司 新昌 312500;
    b 厦门大学化学化工学院 厦门 361005

收稿日期: 2018-11-05

  修回日期: 2018-11-29

  网络出版日期: 2018-12-17

基金资助

浙江省重点研发计划(No.2017C03002)和国家自然科学基金(No.21572186)资助项目.

Synthesis of α-Halo Amides via Zinc-Mediated Tandem Oxidation/Halogenation of Ynamides

  • Zhu Jianrong ,
  • Ren Xiaojuan ,
  • Tang Feiyu ,
  • Pan Fei ,
  • Ye Longwu
Expand
  • a Zhejiang Jingxin Pharmaceutical CO., LTD., Xinchang 312500;
    b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2018-11-05

  Revised date: 2018-11-29

  Online published: 2018-12-17

Supported by

Project supported by the Key R&D Program of Zhejiang Province (No.2017C03002) and the National Natural Science Foundation of China (No.21572186).

摘要

α-卤代酰胺是一类十分重要的羰基化合物,广泛存在于众多天然产物和生物活性分子之中.本工作实现了通过卤化锌同时作为催化剂和卤素源的炔酰胺串联氧化/卤化反应,从而避免使用其他的外加卤化试剂.该反应可以中等到良好的产率得到一系列合成上非常有用的α-卤代酰胺化合物.

本文引用格式

朱建荣 , 任小娟 , 唐飞宇 , 潘飞 , 叶龙武 . 锌介导的炔酰胺串联氧化/卤化反应合成α-卤代酰胺[J]. 有机化学, 2019 , 39(4) : 1102 -1108 . DOI: 10.6023/cjoc201811007

Abstract

α-Haloamides are a very important class of carbonyl compounds, and widely exist in a range of natural products and bioactive molecules. Herein, the realization of the tandem oxidation/halogenation of ynamides by employing the zinc halide as both the catalyst and the halogen source is described, thus avoiding the use of other external halogenating reagents. This method allows the practical synthesis of a variety of valuable α-haloamides in moderate to good yields.

参考文献

[1] (a) Gribble, G. W. Naturally Occurring Organohalogen Compounds:A Comprehensive Update, Springer-Verlag, Wienheim, Germany, 2010.
(b) Gribble, G. W. Naturally Occurring Organohalogen Compounds:A Comprehensive Survey, Springer-Verlag, Wienheim, Germany, 1996.
[2] For recent selected reviews, see:(a) Chung, W.-J.; Vanderwal, C. D. Acc. Chem. Res. 2014, 47, 718.
(b) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.
(c) Chelucci, G. Chem. Rev. 2012, 112, 1344.
(d) Aubin, Y.; Fischmeister, C.; Thomas, C. M.; Renaud, J.-L. Chem. Soc. Rev. 2010, 39, 4130.
(e) Roman, B. I.; De Kimpe, N.; Stevens, C. V. Chem. Rev. 2010, 110, 5914.
[3] For reviews on catalytic intermolecular N-oxide oxidation of alkynes, see:(a) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448.
(b) Zhou, B.; Li, L.; Ye, L.-W. Synlett 2016, 493.
(c) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677.
(d) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
(e) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
(f) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.
[4] For recent selected examples, see:(a) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8, 7351.
(b) Zhao, J.; Xu, W.; Xie, X.; Sun, N.; Li, X.; Liu, Y. Org. Lett. 2018, 20, 5461.
(c) Li, J.; Xing, H.-W.; Yang, F.; Chen, Z.-S.; Ji, K. Org. Lett. 2018, 20, 4622.
(d) Hamada, N.; Yamaguchi, A.; Inuki, S.; Oishi, S.; Ohno, H. Org. Lett. 2018, 20, 4401.
(e) M. Lin, L. Zhu, J. Xia, Y. Yu, J. Chen, Z. Mao, X. Huang, Adv. Synth. Catal. 2018, 360, 2280.
(f) Xu, Z.; Chen, H.; Wang, Z.; Ying, A.; Zhang, L. J. Am. Chem. Soc. 2016, 138, 5515.
(g) Zeng, X.; Liu, S.; Shi, Z.; Liu, G.; Xu, B. Angew. Chem., Int. Ed. 2016, 55, 10032.
(h) Zhang, Y.; Xue, Y.; Li, G.; Yuan, H.; Luo, T. Chem. Sci. 2016, 7, 5530.
(i) Wang, Y.; Zheng, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 5316.
(j) Chen, H.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 11775.
(k) Ji, K.; Zheng, Z.; Wang, Z.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 1245.
(l) Chen, M.; Chen, Y.; Sun, N.; Zhao, J.; Liu, Y.; Li, Y. Angew. Chem., Int. Ed. 2015, 54, 1200.
(m) Zheng, Z.; Zhang, L. Org. Chem. Front. 2015, 2, 1556.
(n) Ji, K.; Liu, X.; Du, B.; Yang, F.; Gao, J. Chem. Commun. 2015, 51, 10318.
(o) Qian, D.; Hu, H.; Liu, F.; Tang, B.; Ye, W.; Wang, Y.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 13751.
[5] (a) Kim, S. W.; Um, T.-W.; Shin, S. Chem. Commun. 2017, 53, 2733.
(b) Li, L.; Zhou, B.; Ye, L.-W. Chin. J. Org. Chem. 2015, 35, 655(in Chinese). (李龙, 周波, 叶龙武, 有机化学, 2015, 35, 655.)
(c) Nösel, P.; dos Santos Comprido, L. N.; Lauterbach, T.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2013, 135, 15662.
(d) Wang, K.-B.; Ran, R.-Q.; Xiu, S.-D.; Li, C.-Y. Org. Lett. 2013, 15, 2374.
(e) Yang, L.-Q.; Wang, K.-B.; Li, C.-Y. Eur. J. Org. Chem. 2013, 2775.
(f) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200.
(g) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372.
(h) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2011, 50, 6911.
[6] (a) Wang, C.-M.; Qi, L.-J.; Sun, Q.; Zhou, B.; Zhang, Z.-X.; Shi, Z.-F.; Lin, S.-C.; Lu, X.; Gong, L.; Ye, L.-W. Green Chem. 2018, 20, 3271.
(b) Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748.
(c) Pan, F.; Li, X.-L.; Chen, X.-M.; Shu, C.; Ruan, P.-P.; Shen, C.-H.; Lu, X.; Ye, L.-W. ACS Catal. 2016, 6, 6055.
(d) Ruan, P.-P.; Shen, C.-H.; Li, L.; Liu, C.-Y.; Ye, L.-W. Org. Chem. Front. 2016, 3, 989.
(e) Li, L.; Zhou, B.; Wang, Y.-H.; Shu, C.; Pan, Y.-F.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2015, 54, 8245.
(f) Li, L.; Shu, C.; Zhou, B.; Yu, Y.-F.; Xiao, X.-Y.; Ye, L.-W. Chem. Sci. 2014, 5, 4057.
(g) Pan, F.; Liu, S.; Shu, C.; Lin, R.-K.; Yu, Y.-F.; Zhou, J.-M.; Ye, L.-W. Chem. Commun. 2014, 50, 10726.
[7] For recent reviews on ynamide reactivity, see:(a) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456.
(b) Evano, G.; Theunissen, C.; Lecomte, M. Aldrichim. Acta 2015, 48, 59.
(c) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
(d) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
(e) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.
[8] For selected examples from our group, see:(a) Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 4015.
(b) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 605.
(c) Li, L.; Chen, X.-M.; Wang, Z.-S.; Zhou, B.; Liu, X.; Lu, X.; Ye, L.-W. ACS Catal. 2017, 7, 4004.
(d) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
(e) Pan, Y.; Chen, G.-W.; Shen, C.-H.; He, W.; Ye, L.-W. Org. Chem. Front. 2016, 3, 491.
(f) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567.
(g) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265.
[9] Pan, F.; Shu, C.; Ping, Y.-F.; Pan, Y.-F.; Ruan, P.-P.; Fei, Q.-R.; Ye, L.-W. J. Org. Chem. 2015, 80, 10009.
[10] (a) Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 1915.
(b) Henrion, G.; Chava, T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277.
[11] For recent selected examples, see:(a) Liu, Y.; Dong, W. Chin. J. Chem. 2017, 35, 1491.
(b) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.

文章导航

/