利用碳碳叁键断裂重组反应合成2,4,4-三氯萘-1(4H)-酮衍生物
收稿日期: 2018-11-10
修回日期: 2018-12-07
网络出版日期: 2018-12-21
基金资助
国家自然科学基金(No.21602087)、江苏高校品牌专业建设工程基金、江苏省自然科技基金(No.BK20160212)和江苏省青蓝工程资助项目.
C—C Triple Bond Cleavage/Rearrangement Reaction for Accessing 2,4,4-Trichloronaphthalen-1(4H)-ones
Received date: 2018-11-10
Revised date: 2018-12-07
Online published: 2018-12-21
Supported by
Project supported by the National Natural Science Foundation of China (No.21602087),the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions,the Natural Science Foundation of Jiangsu Province (No.BK20160212),and the Qing Lan Project of Jiangsu Education Committee.
以炔烃-联烯酮为原料,水作为亲核试剂,通过N-氯代丁二酰亚胺(NCS)介导的[2+2]环加成和碳碳叁键断裂重组反应合成了18个2,4,4-三氯萘-1(4H)-酮衍生物,产率为55%~88%.所得产物的结构经NMR和IR以及HRMS等表征,其中目标产物2e的结构经X单晶分析确认.该反应条件温和、操作简单、无需金属催化剂且产率良好,为合成官能化的1-萘酮衍生物提供了一种新的高效的合成策略.
关键词: 炔烃-联烯酮; [2+2]环加成; 碳碳叁键断裂重组反应; 2,4,4-三氯萘-1(4H)-酮衍生物
蒋文婕 , 宋雅婷 , 韦晓静 , 徐义 , 陆娟 , 姜波 , 郝文娟 . 利用碳碳叁键断裂重组反应合成2,4,4-三氯萘-1(4H)-酮衍生物[J]. 有机化学, 2019 , 39(4) : 1095 -1101 . DOI: 10.6023/cjoc201811015
N-Chlorosuccinimide (NCS)-mediated[2+2] cycloaddition and C-C triple bond cleavage/rearrangement reaction of yne-allenones and H2O as a nucleophilic reagent enabled the formation of 18 examples of 2,4,4-trichloronaphthalene-1(4H)-one derivatives with 55%~88% yields. The structures of these obtainable products were based on their NMR, IR and HRMS data, among which the structure of product 2e was confirmed by X-ray analysis. This metal-free transformation features mild conditions, simple operation and high reaction yields. It provides an effective and new protocol for the synthesis of trichloro-substituted naphthalene-1(4H)-ones.
[1] (a) For reviews, see:Jennings, P. W.; Johnson, L. L. Chem. Rev. 1994, 94, 2241.
(b) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870.
[2] (a) Jiang, Q.; Zhao, A.; Xu, B.; Jia, J.; Liu, X.; Guo, C. J. Org. Chem. 2014, 79, 2709.
(b) Okamoto, N.; Ishikura, M.; Yanada, R. Org. Lett. 2013, 15, 2571.
[3] (a) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724.
(b) Adams, H.; Guio, L. V. Y.; Morris, M. J.; Spey, S. E. J. Chem. Soc., Dalton Trans. 2002, 2907.
(c) O'Connor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013.
(d) Hayashi, N.; Ho, D. M.; Pascal, Jr., R. A. Tetrahedron Lett. 2000, 41, 4261.
(e) Cairns, G. A.; Carr, N.; Green, M.; Mahon, M. F. Chem. Commun. 1996, 2431.
[4] (a) Moriarty, R. M. Penmasta, R.; Awasthi, A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124.
(b) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133.
(c) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4701.
[5] Shen, T.; Wang, T.; Qin, C.; Jiao, N.; Angew. Chem., Int. Ed. 2013, 52, 6677.
[6] (a) Wang, A.; Jiang, H. J. Am. Chem. Soc., 2008, 130, 5030.
(b) Liu, Q.; Chen, P.; Liu, G. ACS Catal. 2013, 3, 178.
[7] (a) Jun, C.-H.; Lee, H.; Moon, C. W.; Hong, H.-S. J. Am. Chem. Soc. 2001, 123, 8600.
(b) Cha, K.-M.; Jo, E.-A.; Jun, C.-H. Synlett 2009, 2939.
[8] (a) Das, A.; Chaudhuri, R.; Liu, R.-S. Chem. Commun. 2009, 4046.
(b) Liu, Y.; Song, F.; Guo, S. J. Am. Chem. Soc. 2006, 128, 11332.
(c) Qin, C.; Su, Y.; Shen, T.; Shi, X.; Jiao, N. Angew. Chem., Int. Ed. 2016, 55, 350.
[9] Sun, J.; Wang, F.; Hu, H.; Wang, X.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 3992.
[10] (a) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9294.
(b) Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 6646.
[11] (a) Liang, Y.-F.; Song, S.; Ai, L.; Li, X.; Jiao, N. Green Chem. 2016, 18, 6462.
(b) Sha, H.-K.; Xu, T.; Liu, F.; Tang, B.-Z.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 10415.
(c) Sha, H.-K.; Liu, F.; Lu, J.; Liu, Z.-Q.; Hao, W.-J.; Tang, J.-L.; Tu, S.-J.; Jiang, B. Green Chem. 2018, 20, 3476.
(d) Wang, L.; Shi, L.-X.; Liu, L.; Li, Z.-X.; Xu, T.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2017, 82, 3605
[12] (a) Qiu, J.-K.; Jiang, B.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Sun, J.; Wei, P.; Tu, S.-J.; Li, G. J. Am. Chem. Soc. 2015, 137, 8928.
(b) Sun, J.; Qiu, J.-K.; Wu, Y.-N.; Hao, W.-J.; Guo, C.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 754.
(c) Liu, F.; Wang, J.-Y.; Zhou, P.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang B., Angew. Chem., Int. Ed. 2017, 56, 15570.
(d) Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 10791.
(e) Huang, M.-H.; Hao, W.-J.; Jiang, B. Chem. Asian J. 2018, 13, 2958.
(f) Wang, A.-F.; Hao, W.-J.; Zhu, Y.-L.; Li, G.; Zhou, P.; Tu, S.-J.; Jiang, B. ACS Omega 2018, 3, 1482.
[13] (a) Wang, J.-Y.; Zhou, P.; Li, G.; Hao W.-J.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 6682.
(b) Zhou, P.; Wang, J.-Y.; Zhang, T.-S.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 164.
(c) Li, H.; Hao, W.-J.; Wang, M.; Qin, X.; Tu, S.-J.; Zhou, P.; Li, G.; Wang, J.; Jiang, B. Org. Lett. 2018, 20, 4362.
[14] For selected examples, see:(a) Shen, Q.; G. Hammond, B. J. Am. Chem. Soc. 2002, 124, 6534.
(b) Ohno, H.; Mizutani, T.; Kadoh, Y.; Miyamura, K.; Tanaka, T. Angew. Chem., Int. Ed. 2005, 44, 5113.
(c) Siebert, M. R.; Osbourn, J. M.; Brummond, K. M.; Tantillo, D. J. J. Am. Chem. Soc. 2010, 132, 11952.
[15] Li, H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Front. Chem. 2018, 6, 599.
(b) Li, H.; Zhou, P.; Xie, F.; Hu, J.-Q.; Yang, S.-Z.; Wang, Y.-J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2018, 83, 13335.
(c) Wang, J.-Y.; Xie, F.; Hu, J.-Q.; Yang, S.-Z.; Wang, Y.-J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Biomol. Chem. 2018, 16, 7104.
/
〈 |
|
〉 |