综述与进展

过渡金属催化有机钛试剂的偶联反应研究进展

  • 黄辉 ,
  • 李娟华 ,
  • 刘昆明 ,
  • 刘晋彪
展开
  • 江西理工大学冶金与化学工程学院 赣州 341000

收稿日期: 2018-10-29

  修回日期: 2018-12-19

  网络出版日期: 2019-01-10

基金资助

国家自然科学基金(Nos.21762018、21772067)、江西省教育厅科技项目(No.GJJ160668)、江西理工大学清江青年英才计划项目、江西理工大学大学生创新创业训练计划项目(No.XZG-16-08-12)及江西理工大学博士启动经费资助项目.

Recent Progress in Transition Metal-Catalyzed Coupling Reactions of Organotitanium Reagents

  • Huang Hui ,
  • Li Juanhua ,
  • Liu Kunming ,
  • Liu Jinbiao
Expand
  • School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000

Received date: 2018-10-29

  Revised date: 2018-12-19

  Online published: 2019-01-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21762018, 21772067), the Science and Technology Project Founded by the Education Department of Jiangxi Province (No. GJJ160668), the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology, the Innovation and Entrepreneurship Training Program (No. XZG-16-08-12) and the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology.

摘要

有机钛试剂廉价低毒,形态多样,具有优异的化学、区域和立体选择性.通过调整中心钛原子的配体可对有机钛试剂的反应活性进行调控.近年来,有机钛试剂参与的偶联反应引起了化学家们的广泛关注.从有机钛试剂类型出发,就过渡金属催化有机钛试剂的偶联反应进行了简要综述.

本文引用格式

黄辉 , 李娟华 , 刘昆明 , 刘晋彪 . 过渡金属催化有机钛试剂的偶联反应研究进展[J]. 有机化学, 2019 , 39(5) : 1293 -1303 . DOI: 10.6023/cjoc201810036

Abstract

Organotitanium proves to be one of ideal organometallic candidates because of its low price, non-toxicity, diversified types, excellent chemo-, regio- and stereo-selectivities. The reactivity of organotitanium reagent could be easily controlled by ligands of central titanium atom. Recently, the coupling reactions of organotitanium reagent have attracted extensive attention. This review summerized recent progress in transiton metal-catalyzed coupling reactons of organotitanium reagents concerning their types.

参考文献

[1] For Grignard reagent:(a) Tamao, K. J. Organomet. Chem. 2002, 653, 23.
(b) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302.
(c) Ha, H.; Baron, O.; Wanger, A. J.; Knochel, P. Chem. Lett. 2006, 35, 2.
[2] For Lithium reagent:(a) Barluenga, J.; Feunandez, A.; Alvarez- Rodrigo, L.; Rodriguez, F.; Fananas, F. J. Synlett 2005, 2513.
(b) Son, E. C.; Tsuji, H.; Saeki, T.; Tamao, K. Bull. Chem. Soc. Jpn. 2006, 79, 492.
(c) He, P.; Dong, C. G.; Hu, Q. S. Tetrahedron Lett. 2008, 49, 1906.
[3] Knochel, P.; Singer, R. D. Chem. Rev. 1993. 93, 2117.
[4] Lipshutz, B. H. Acc. Chem. Res. 1997, 30, 277.
[5] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Suzuki, A. Pure Appl. Chem. 1994, 66, 213.
[6] Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704.
[7] Weidmann, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1983, 12, 31.
[8] (a) Reetz, M. T.; Steinbach, R.; Westermann, J.; Peter, R. Angew. Chem., Int. Ed. 1980, 92, 1044.
(b) Olivero, A. G.; Weidmann, B.; Seebach, D. Helv. Chim. Acta 1981, 64, 2485.
(c) Widler, L.; Seebach, D. Helv. Chim. Acta 1982, 65, 1085.
(d) Widler, L.; Seebach, D. Helv. Chim. Acta 1982, 65, 1972.
[9] (a) Wu, S. Z.; Zhou, Y. K. Chin. J. Org. Chem. 1983, 3, 9(in Chinese). (吴绍祖, 周耀坤, 有机化学, 1983, 3, 9.)
(b) Chen, M. W. Chem. Reag. 1992, 14, 297(in Chinese). (陈美文, 化学试剂, 1992, 14, 297.)
(c) Hughes, D. L. Top. Organomet. Chem. 2004, 6, 37.
(d) Kulinkovich, O. G.; Meijere, A. D. Chem. Rev. 2000, 100, 2789;
(e) Hayashi, T. Bull. Chem. Soc. Jpn. 2004, 77, 13.
(f) Yang, Z. S.; Li, Y. Chin. J. Org. Chem. 2005, 25, 1342(in Chinese). (杨忠顺, 李英, 有机化学, 2005, 25, 1342.)
(g) Kulinkovich, O. Comprehensive Organic Synthesis Ⅱ, 2nd ed., Elsevier Ltd., Netherlands, 2014, 124.
[10] Weidmann, B.; Seebach, D. Helv. Chim. Acta 1980, 63, 2451.
[11] Herman, D. F.; Nelson, W. K. J. Am. Chem. Soc. 1952, 74, 2693.
[12] Tolstikov, G. A.; Kasatkin, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1984, 2835
[13] Kasatkin, A. N.; Tolstikov, G. A.; Kulak, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1986, 11, 2527.
[14] (a) Kasatkin, A. N.; Tolstikov, G. A.; Kulak, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, 2, 391.
(b) Kasatkin, A. N.; Tolstikov, G. A.; Kulak, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1988, 9, 2159.
[15] (a) Weber, B.; Seebach, D. Tetrahedron 1994, 50, 7473.
(b) Kim, Y. H.; Byun, I. S.; Choi, J. Y. Tetrahedron:Asymmetry 1995, 6, 1025.
(c) Zhou, S.; Chen, C.-R.; Gau, H.-M. Org. Lett. 2009, 12, 48.
(d) Wu, K.-H.; Zhou, S.; Chen, C.-A.; Yang, M.-C.; Chiang, R.-T.; Chen, C.-R.; Gau, H.-M. Chem. Comm. 2011, 4, 11668.
[16] Han, J. W.; Tokunaga, N.; Hayashi, T. Synlett 2002, 871.
[17] Manolikakes, G.; Dastbaravardeh, N.; Knochel, P. Synlett 2007, 2077.
[18] Lee, H. W.; Lam, F. L.; So, C. M.; Lau, C. P.; Chan, A. S. C.; Kwong, F. Y. Angew. Chem., Int. Ed. 2009, 48, 7436.
[19] (a) Yang, H.-T.; Zhou, S.; Chang, F.-S.; Chen, C.-R.; Gau, H.-M. Organometallics 2009, 28, 5715.
(b) Chen, C.-R.; Zhou, S.; Biradar, D. B.; Gau, H.-M. Adv. Synth. Catal. 2010, 352, 1718.
[20] Chang, S.-T.; Li, Q.-H.; Chiang, R.-T.; Gau, H.-M. Tetrahedron 2012, 68, 3956.
[21] Li, Q.-H.; Liao, J.-W.; Huang, Y.-L.; Chiang, R.-T.; Gau, H.-M. Org. Biomol. Chem. 2014, 12, 7634.
[22] Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev., 2000, 100, 2835.
[23] Harada, K.; Urabe, H.; Sato, F. Tetrahedron Lett. 1995, 36, 3203.
[24] Obora, Y.; Moriya, H.; Tokunaga, M.; Tsuji, Y. Chem. Commun. 2003, 2820.
[25] You, X.; Xie, X.; Sun, R. H.; Chen, H. Y.; Li, S; Liu, Y. H. Org. Chem. Front. 2014, 1, 940.
[26] Rassadin, V. A.; Nicolasb, E.; Six, Y. Chem. Commun. 2014, 50, 7666.
[27] Wittig, G. Angew. Chem. 1958, 70, 65.
[28] Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2012, 111, 1417.
[29] (a) Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am. Chem. Soc. 2010, 132, 10674.
(b) Hashimoto, T.; Hatakeyama, T.; Nakamura, M. J. Org. Chem. 2012, 77, 1168.
(c) Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Angew. Chem., Int. Ed. 2012, 124, 1.
(d) Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Chem. Lett. 2015, 44, 486.
[30] (a) Muramatsu, Y.; Harada, T. Angew. Chem., Int. Ed. 2008, 47, 1088.
(b) Muramatsu, Y.; Harada, T. Chem.-Eur. J. 2008, 14, 10560.
(c) Nakagawa, Y.; Muramatsu, Y.; Harada, T. Eur. J. Org. Chem. 2010, 34, 6535.
(d) Itakura, D.; Harada, T. Synlett 2011, 2875.
[31] Mikami, K.; Murase, T.; Itoh, Y. J. Am. Chem. Soc. 2007, 129, 11686.
[32] Arai, M.; Nakamura, E. J. Org. Chem. 1991, 56, 5489.
[33] (a) Li, Y.-X.; Xuan, Q.-Q.; Liu, L.; Wang, D.; Chen, Y.-J.; Li, C.-J. J. Am. Chem. Soc. 2013, 135, 12536.
(b) Semba, K.; Nakao, Y. J. Am. Chem. Soc. 2014, 136, 7567.
(c) Labre, F.; Gimbert, Y.; Bannwarth, P.; Olivero, S.; Duñach, E.; Chavant, P. Y. Org. Lett. 2014, 16, 2366.
(d) Seth, K.; Purohit, P.; Chakraborti, A. K. Org. Lett. 2014, 2334.
[34] (a) Mulvey, R. E. Organometallics 2006, 25, 1060.
(b) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem., Int. Ed. 2007, 46, 3802.
[35] Zeng, J.; Liu, K.-M.; Duan, X.-F. Org. Lett. 2013, 15, 5342.
[36] Wei, J.; Liu, K.-M.; Duan, X.-F. J. Org. Chem. 2017, 82, 1291.
[37] (a) Bedford, R. B.; Hall, M. A.; Hodges, G. R.; Huwe, M.; Wilkinson, M. C. Chem. Commun. 2009, 42, 6430.
(b) O'Brien, H. M.; Manzotti, M.; Abrams, R. D.; Elorriaga, D.; Sparkes, H. A.; Davis, S. A.; Bedford, R. B. Nat. Catal. 2018, 1, 429.
[38] Zhang, R.; Zhao, Y.; Liu, K.-M.; Duan, X.-F. Org. Lett. 2018, 7942.
[39] Liu, K.-M.; Liao, L.-Y.; Duan, X.-F. Chem. Commun. 2015, 51, 1124.
[40] Liu, K.-M.; Wei, J.; Duan, X.-F. Chem. Commun. 2015, 51, 4655.
[41] Liao, L.-Y.; Liu, K.-M.; Duan, X.-F. J. Org. Chem. 2015, 80, 9856.
[42] (a) Goossen, L. J.; Paetzold, J.; Winkel, L. Synlett 2002, 1721.
(b) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
(c) Goossen, L. J.; Rodriguez, N.; Melzer, B. J. Am. Chem. Soc. 2007, 129, 4824.
(d) Zhou, J.; Peng, H.; Zhang, M.; Huang, S. J.; Wang, M.; Su, W.-P. Chem.-Eur. J. 2010, 16, 5876.
[43] Liu, K.-M.; Zhang, R.; Duan, X.-F. Org. Biomol. Chem. 2016, 14, 1593.
[44] (a) Lumbroso, A.; Abermil, N.; Breit, B. Chem. Sci. 2012, 3, 789.
(b) Iitsuka, T.; Schaal, P.; Hirano, K.; Satoh, T.; Bolm, C.; Miura, M. J. Org. Chem. 2013, 78, 7216.
(c) Zhang, M. L.; Zhang, H.-J.; Han, T. T.; Ruan, W. Q.; Wen, T.-B. J. Org. Chem. 2015, 80, 620.
[45] (a) Vilardo, J. S.; Thorn, M. G.; Fanwick, P. E.; Rothwell, I. P. Chem. Commun. 1998, 22, 2425.
(b) Turner, L. E.; Thorn, M. G.; Swartz Ⅱ, R. D.; Chesnut, R. W.; Fanwick, P. E.; Rothwell, I. P. Dalton Trans. 2003, 24, 4580.
[46] (a) Boyle, T. J.; Ottley, L. A. M.; Rodriguez, M. A.; Sewell, R. M.; Alam, T. M.; McIntyre, S. K. Inorg. Chem. 2008, 47, 10708.
(b) Muna, S.-D.; Kim, S.-H.; Lee, J.; Kim, H.-J.; Do, Y.-K.; Kim, Y.-J. Polyhedron 2010, 29, 379.
(c) Deivasagayam, D.; Peruch, F. Polymer 2011, 52, 4686.

文章导航

/