综述与进展

环糊精参与的过渡金属催化有机反应

  • 陈雅琪 ,
  • 桂鑫 ,
  • 段尊斌 ,
  • 朱丽君 ,
  • 项玉芝 ,
  • 夏道宏
展开
  • 中国石油大学(华东)化学工程学院 重质油国家重点实验室 青岛 266580

收稿日期: 2018-09-06

  修回日期: 2018-12-03

  网络出版日期: 2019-01-18

基金资助

国家自然科学基金(No.21376265)资助项目.

Transition Metal Catalyzed Organic Reaction Involving Cyclodextrin

  • Chen Yaqi ,
  • Gui Xin ,
  • Duan Zunbin ,
  • Zhu Lijun ,
  • Xiang Yuzhi ,
  • Xia Daohong
Expand
  • State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580

Received date: 2018-09-06

  Revised date: 2018-12-03

  Online published: 2019-01-18

Supported by

Project supported by the the National Natural Science Foundation of China (No. 21376265).

摘要

环糊精是一种通过α-1,4-糖苷键将D-吡喃葡萄糖单元连接在一起而形成的环状低聚糖,具有“内疏水、外亲水”的刚性锥形空腔结构.正是由于这个独特的“内疏水、外亲水”空间结构,使得环糊精从被发现以来,越来越受到科学工作者的关注.过渡金属催化剂作为重要的工业催化剂,与环糊精体系结合可同时发挥金属的催化性能和环糊精的分子识别和相转移等功能,极大地改善其催化性能.主要综述了环糊精参与的过渡金属催化的有机化学反应,以金属价态分类介绍了常见的0至4价过渡金属参与催化的有机反应,并对环糊精参与的金属共催化体系的未来发展前景进行了展望,预计今后该催化体系将会有更广阔的应用,不断开发出更加高效和更有选择性的催化系统.

本文引用格式

陈雅琪 , 桂鑫 , 段尊斌 , 朱丽君 , 项玉芝 , 夏道宏 . 环糊精参与的过渡金属催化有机反应[J]. 有机化学, 2019 , 39(5) : 1284 -1292 . DOI: 10.6023/cjoc201809012

Abstract

Cyclodextrin is a kind of cyclic oligosaccharide which is composed of the D-pyran glucose units connected with the α-1,4-glycosidic bond. Cyclodextrin has the rigidly tapered cavity of hydrophobic inner and hydrophilic outer. Cyclodextrin has been attracted more and more attention from scientists since it was discovered, owning to its special space cavity of hydrophilic inner and hydrophilic outer. As an important industrial catalyst, transition metal catalyst can combine with the cyclodextrin system to simultaneously exert the catalytic properties of the metal and the molecular recognition and phase transfer of cyclodextrin, which greatly improves its catalytic performance. In this paper, the transition metal catalyzed organic reactions involving cyclodextrin are reviewed, and these reactions are described in terms of the metal valence from 0 to 4. Finally, the development and foreground of these co-catalyst systems involving metal and cyclodextrin are prospected. It is expected that the catalytic system will have a wider application in the future, and a more efficient and selective catalytic system will be continuously developed.

参考文献

[1] Lai, E.; Jean, M.; Shen, X. H. M. Supramolecular Chemistry:Concepts and Prospects, Peking University Press, Beijing, 2002 (in Chinese). (莱恩, Jean, M., 沈兴海, 超分子化学:概念和展望, 北京大学出版社, 北京, 2002.)
[2] Xia, D. H.; Jiang, S. J.; Li, L.-L.; Xiang, Y. Z.; Zhu, L. J. Chin. J. Chem. Eng. 2016, 24, 146.
[3] Tong, L. H. M. Cyclodextrin Chemistry-Basics and Applications, Science Press, Beijing, 2001 (in Chinese). (童林荟, 环糊精化学-基础与应用, 科学出版社, 北京, 2001.)
[4] Shen, H. M.; Ji, H. B. Chin. J. Org. Chem. 2011, 32, 791(in Chinese), (沈海民, 纪红兵, 有机化学, 2011, 32, 791.)
[5] Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. J. Am. Chem. Soc. 2016, 138, 16645.
[6] Menuel, S.; Léger, B.; Addad, A.; Monflier, E.; Hapiot, F. Green Chem. 2016, 18, 5500.
[7] Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J.A.; Nuzzo, R. G. Chem. Rev. 2008, 108, 494.
[8] Xiao, J.; Qi, L. Nanoscale 2011, 3, 1383.
[9] Shanmugam, M.; Kim, K. J. Electroanal. Chem. 2016, 776, 82.
[10] Cravotto, G.; Gaudino, E. C.; Tagliapietra, S.; Carnaroglio, D.; Procopio, A. Green Proc. Synth. 2012, 1, 269.
[11] Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018.
[12] Dheer, D.; Rawal, R. K.; Singh, V.; Sangwan, P. L.; Das, P.; Shankar, R. Tetrahedron 2017, 73, 4295.
[13] Patil, R. N.; Vijay Kumar, A. ACS Omega 2017, 2, 6405.
[14] Messmer, E. Z. Phys. Chem. 1927, 126, 369.
[15] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 113, 2056.
[16] Krasinski, A.; Radic, Z.; Manetsch, R.; Raushel, J.; Taylor, P.; Sharpless, K. B.; Kolb, H. C. J. Am. Chem. Soc. 2004, 126, 12809.
[17] Hein, J. E.; Tripp, J. P.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 1.
[18] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
[19] Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
[20] Aprahamian, I.; Dichtel, W. R.; Ikeda, T.; Heath, J. R.; Stoddart, J. F. Org. Lett. 2007, 9, 1287.
[21] Yigit, S.; Sanyal, R.; Sanyal, A. Chem. Asian J. 2011, 6, 2648.
[22] Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. J. Am. Chem. Soc. 2012, 134, 9285.
[23] Collinson, J.-M.; Wilton-Ely, J. D. E. T.; Diez-Gonzalez, S. Chem. Commun. 2013, 49, 11358.
[24] Xiong, X.; Chen, H.; Tang, Z.; Jiang, Y. RSC Adv. 2014, 4, 9830.
[25] White, J. R.; Price, G. J.; Schiffers, S.; Raithby, P. R.; Plucinski, P. K.; Frost, C. G. Tetrahedron Lett. 2010, 51, 3913.
[26] Brotherton, W. S.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Dalal, N. S.; Zhu, L. Org. Lett. 2009, 11, 4954.
[27] Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.
[28] Zhu, L.; Lynch, V. M.; Ansly, E. V. Tetrahedron 2004, 60, 7267.
[29] Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Tetrahedron 2014, 70, 9828.
[30] Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv. Synth. Catal. 2003, 345, 557.
[31] Sheng, S. R.; Wang, Q. Y.; Ding, Y.; Liu, X. L.; Cai, M. Z. Catal Lett. 2009, 128, 418.
[32] Reddi, M. N. K.; Satheesh, K. B.; Anil, K. M.; Arulselvan, P.; Ibrahim, K. S.; Lasekan, O. Molecules 2012, 17, 7543.
[33] Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. ChemInform 2010, 345, 557.
[34] Dabbawala, A. A.; Sudheesh, N.; Bajaj, H. C. Dalton. Trans. 2012, 41, 2910.
[35] Datta, K. K. R.; Srinivasan, B.; Balaram, H.; Eswaramoorthy, M. J Chem. Sci. 2008, 120, 579.
[36] Nie, R.; Sang, R.; Ma, X.; Zheng, Y.; Cheng, X.; Li, W.; Wu, Y. J. Catal. 2016, 344, 286.
[37] Yao, Z.; Hong, S.; Zhang, W.; Liu, M.; Deng, W. Tetrahedron Lett. 2016, 57, 910.
[38] Zhang, P.; Meijide, S. J.; Driant, T.; Derat, E.; Zhang, Y.; Ménand, M. Angew. Chem. 2017, 129, 10961.
[39] (a) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Eur. J. Org. Chem. 2011, 6656.
(b) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Org. Biomol. Chem. 2012, 10, 4543.
[40] Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. ChemInform 2013, 44, 2262.
[41] Perez, A. L.; Moseguer, J. O.; Marques, P. R.; Corma, A. Angew. Chem., Int. Ed. 2013, 125, 11768.
[42] Hoffmann, I.; Blumenröder, B.; Thumann,S. O. N.; Dommer, S.; Schatz, J. Green Chem. 2015, 17, 3844.
[43] Saito, N.; Taniguchi, T.; Hoshiya, N.; Shuto, S.; Arisawa, M.; Sato, Y. Green Chem. 2015, 17, 2358.
[44] (a) Zhong, R.; Pöthig, A.; Feng, Y.; Riener, K.; Herrmann, W. A.; Kühn, F. E. Green Chem. 2014, 16, 4955.
(b) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 38, 3358.
(c) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 30, 4369.
(d) Martin R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(e) Vellakkaran, M.; Andappan, M. M. S.; Kommu, N. Green Chem. 2014, 16, 2788.
[45] Raihana, I. K.; Kasi, P. Green Chem. 2016, 18, 4791.
[46] Qi, M.; Tan, P. Z. Xue, F.; Malhi, H. S.; Zhang, Z. X.; Young, D. J. Rsc. Adv. 2014, 5, 3590.
[47] Zhou, X.; Guo, X.; Jian, F.; Wei, G. ACS Omega 2018, 3, 4418.
[48] Guo, Y.; Li, J.; Zhao, F.; Lan, G.; Li, L.; Liu, Y.; Yang, R. RSC Adv. 2016, 6, 7950.
[49] Imran, K. R.; Pitchumani, K. ACS Sustainable Chem. Eng, 2018.
[50] Poulos, T. L. Chem. Rev. 2014, 114, 3919.
[51] Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532.
[52] Xu, X.; Li, C.; Tao, Z.; Pan, Y. Adv. Synth. Catal. 2015, 357, 3341.
[53] Wang, M. L.; Fang, G. D; Liu, P. Appl. Catal., B 2016, 188, 113.
[54] Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E. ACS Nano. 2010, 4, 4001.
[55] Sharavath, V.; Sarkar, S.; Gandla, D.; Ghosh, S. Electrochim. Acta 2016, 210, 385.
[56] Mohamed, M. A.; Shukla, A.; Sandhya, K. Y. Environ. Prog. Sustainable 2016, 35, 1283.
[57] Subramanian, R.; Ponnusamy, V. J. Mater. Sci.: Mater. Electron. 2016, 28, 1.
[58] Sun, N.; Wang, T.; Liu, C. Wood. Sci. Tenol. 2016, 50, 1.

文章导航

/