通过电化学脱氢N—N偶联合成四取代肼化合物
收稿日期: 2018-12-04
修回日期: 2018-12-27
网络出版日期: 2019-01-18
基金资助
国家自然科学基金(No.21672178)、国家基础科学人才培养(No.J131002)资助项目.
Electrochemical Synthesis of Tetrasubstituted Hydrazines by Dehydrogenative N-N Bond Formation
Received date: 2018-12-04
Revised date: 2018-12-27
Online published: 2019-01-18
Supported by
Project supported by the National Natural Science Foundation of China (No. 21672178) and the National Foundation for Fostering Talents in Basic Science (No. J1310024).
冯恩祺 , 侯中伟 , 徐海超 . 通过电化学脱氢N—N偶联合成四取代肼化合物[J]. 有机化学, 2019 , 39(5) : 1424 -1428 . DOI: 10.6023/cjoc201812007
An electrochemical synthesis of tetrasubstituted hydrazines through dehydrogenative dimerization of secondary amines has been developed. The reactions are conducted in a simple undivided cell with constant current. The use of electricity to promote the reactions obviates the need for transition metal catalysts and oxidizing reagents, providing an efficient and sustainable access to tetrasubstituted hydrazines with diverse electronic properties.
[1] (a) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794.
(b) Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; Ju, J.; Kurtán, T.; Zhang, C. Eur. J. Org. Chem. 2012, 5256.
(c) Shoeb, M.; Celik, S.; Jaspars, M.; Kumarasamy, Y.; MacManus, S. M.; Nahar, L.; Thoo-Lin, P. K.; Sarker, S. D. Tetrahedron 2005, 61, 9001.
(d) Higashibayashi, S.; Pandit, P.; Haruki, R.; Adachi, S.-i.; Kumai, R. Angew. Chem., Int. Ed. 2016, 55, 10830.
[2] Hou, Z. W.; Mao, Z. Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 1636.
[3] (a) Reddy, C. B. R.; Reddy, S. R.; Naidu, S. Catal. Commun. 2014, 56, 50.
(b) Yan, X.-M.; Chen, Z.-M.; Yang, F.; Huang, Z.-Z. Synlett 2011, 2011, 569.
(c) Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074.
(d) Fritsche, R. F.; Theumer, G.; Kataeva, O.; Knolker, H. J. Angew. Chem., Int. Ed. 2017, 56, 549.
(e) Zhu, Y.; Shi, Y. Org. Lett. 2013, 15, 1942.
[4] (a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
(b) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
(c) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
(d) Yang, Q. L.; Fang, P.; Mei, T. S. Chin. J. Chem. 2018, 36, 338.
(e) Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel Siegfried, R. Angew. Chem., Int. Ed. 2018, 57, 5594.
(f) Moeller, K. D. Chem. Rev. 2018, 118, 4817.
(g) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265.
(h) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
[5] (a) Hayashi, R.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2016, 138, 8400.
(b) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.
(c) Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 3009.
(d) Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.
(e) Feng, R.; Smith, J. A.; Moeller, K. D. Acc. Chem. Res. 2017, 50, 2346.
(f) Yang, Q. L.; Li, Y. Q.; Ma, C.; Fang, P.; Zhang, X. J.; Mei, T. S. J. Am. Chem. Soc. 2017, 139, 3293.
(g) Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443.
(h) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Science 2017, 357, 575.
(i) Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2018, 57, 5695.
(j) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.
(k) Ye, Z. H.; Ding, M. R.; Wu, Y. Q.; Li, Y.; Hua, W. K.; Zhang, F. Z. Green Chem. 2018, 20, 1732.
(l) Qian, P.; Su, J.-H.; Wang, Y.; Bi, M.; Zha, Z.; Wang, Z. J. Org. Chem. 2017, 82, 6434.
(m) Lin, D. Z.; Huang, J. M. Org. Lett. 2018, 20, 2112.
(n) Zhang, L.; Zhang, Z. X.; Hong, J. T.; Yu, J.; Zhang, J. N.; Mo, F. Y. J. Org. Chem. 2018, 83, 3200.
[6] Rosen, B. R.; Werner, E. W.; O'Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571.
[7] (a) Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226.
(b) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
(c) Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu, H.-C. ACS Catal. 2017, 2730.
(d) Cai, C.-Y.; Xu, H.-C. Nat. Commun. 2018, 9, 3551.
(e) Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909.
(f) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
(g) Zhao, H.-B.; Xu, P.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 15153.
(h) Wu, Z.-J.; Li, S.-R.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 14070.
(i) Xu, F.; Li, Y.-J.; Huang, C.; Xu, H.-C. ACS Catal. 2018, 3820.
(j) Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168.
(k) Wu, Z.-J.; Li, S.-R.; Long, H.; Xu, H.-C. Chem. Commun. 2018, 54, 4601.
(l) Hou, Z.-W.; Mao, Z.-Y.; Song, J.; Xu, H.-C. ACS Catal. 2017, 5810.
[8] (a) Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317.
(b) Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 9437.
/
〈 |
|
〉 |