研究简报

锌-脯氨酸复合物催化的水相Knoevenagel缩合

  • 颜世强 ,
  • 郭伟 ,
  • 王文笙 ,
  • 张伟
展开
  • a 复旦大学药学院 上海 201203;
    b 山东达因海洋生物制药股份有限公司 威海 264300

收稿日期: 2018-12-26

  修回日期: 2019-01-16

  网络出版日期: 2019-01-31

基金资助

国家自然科学基金(No.81573340)及山东省自主创新及成果转化专项(No.2015ZDXX0302A02)资助项目.

Zinc-Proline Complex Catalyzed Knoevenagel Condensation in Water

  • Yan Shiqiang ,
  • Guo Wei ,
  • Wang Wensheng ,
  • Zhang Wei
Expand
  • a School of Pharmacy, Fudan University, Shanghai 201203;
    b Shandong Dyne Marine Biopharmaceutical Co., Ltd., Weihai 264300

Received date: 2018-12-26

  Revised date: 2019-01-16

  Online published: 2019-01-31

Supported by

Project supported by the National Natural Science Foundation of China (No. 81573340) and the Special Projects for Independent Innovation and Achievement Transformation of Shandong Province (No. 2015ZDXX0302A02).

摘要

报道了锌-脯氨酸复合物催化下的水相Knoevenagel缩合反应.17种芳香醛以及2种脂肪环酮与丙二腈在80℃下反应5~10 min,能够以84%~99%的收率得到相应的Knoevenagel缩合产物.催化剂回收重复使用10次,其催化活性不受影响.

本文引用格式

颜世强 , 郭伟 , 王文笙 , 张伟 . 锌-脯氨酸复合物催化的水相Knoevenagel缩合[J]. 有机化学, 2019 , 39(5) : 1469 -1474 . DOI: 10.6023/cjoc201812046

Abstract

Zinc-proline complex catalyzed Knoevenagel condensation in water was reported. Seventeen aldehydes and two ketones were investigated, which coupled with malononitrile smoothly affording desired Knoevenagel condensation products in 5~10 min at 80℃ in the yields of 84%~99%. The catalyst can be recovered and reused for ten cycles without loss of activity.

参考文献

[1] (a) Tietze, L. F. Chem. Rev. 1996, 96, 115.
(b) Yu, N.; Aramini, J. M.; Germann, M. W.; Huang, Z. Tetrahedron Lett. 2000, 41, 6993.
(c) Vekariya, R. H.; Patel, H. D. Synth. Commun. 2014, 44, 2756.
(d) Wang, X.; Chen, P.; Zhi, S. J.; Hu, Y. H.; Kn, Y. H. Chin. J. Org. Chem. 2018, 38, 3123(in Chinese). (王翔, 陈平, 支三军, 胡华友, 阚玉和, 有机化学, 2018, 38, 3123.)
[2] (a) Bian, Y. J.; Qin, Y.; Xiao, L. W.; Li, J. T. Chin. J. Org. Chem. 2006, 26, 1165(in Chinese). (边延江, 秦英, 肖立伟, 李记太, 有机化学, 2006, 26, 1165.)
(b) Voskressensky, L. G.; Festa, A. A.; Varlamov, A. V. Tetrahedron 2014, 70, 551.
[3] (a) Li, J. T.; Wang, S. X.; Chen, G. F.; Li, T. S. Curr. Org. Synth. 2005, 2, 415.
(b) Yang, K.; Wang, Z.; Fu, J.; Tan, Y. Prog. Chem. 2010, 22, 2126.
(c) Polshettiwar, V.; Varma, R. S. Acc. Chem. Res. 2007, 41, 629.
(d) Kranjc, K.; Kocevar, M. Curr. Org. Chem. 2010, 14, 1050.
[4] (a) Priede, E.; Brica, S.; Bakis, E.; Udris, N.; Zicmanis, A. New J. Chem. 2015, 39, 9132.
(b) Hajipour, A. R.; Rafiee, F. Org. Prep. Proced. Int. 2015, 47, 1.
(c) Hou, H. L; Li, Z. F.; Ying, A. G.; Xu, S. L. Chin. J. Org. Chem. 2014, 34, 1277(in Chinese). (侯海亮, 李志锋, 应安国, 徐松林, 有机化学, 2014, 34, 1277.)
(d) Bigi, F.; Quarantelli, C. Curr. Org. Synth. 2012, 9, 31.
[5] (a) Xie, J.; Chen, L.; Au, C.-T.; Yin, S.-F. Catal. Commun. 2015, 66, 30.
(b) Schejn, A.; Mazet, T.; Falk, V.; Balan, L.; Aranda, L.; Medjahdi, G.; Schneider, R. Dalton Trans. 2015, 44, 10136.
(c) Jin, R.; Bian, Z.; Li, J.; Ding, M.; Gao, L. Dalton Trans. 2013, 42, 3936.
(d) Ding, Y.; Huang, H.; Hu, Y. Chin. J. Org. Chem. 2013, 33, 905(in Chinese). (丁雁, 黄和, 胡燚, 有机化学, 2013, 33, 905.)
[6] (a) Darbre, T.; Machuqueiro, M. Chem. Commun. 2003, 1090.
(b) Kofoed, J.; Machuqueiro, M.; Reymond, J.-L.; Darbre, T. Chem. Commun. 2004, 1540.
(c) Fernandez-Lopez, R.; Kofoed, J.; Machuqueiro, M.; Darbre, T. Eur. J. Org. Chem. 2005, 5268.
[7] Poddar, R.; Jain, A.; Kidwai, M. J. Adv. Res. 2017, 8, 245.
[8] Kidwai, M.; Jain, A. Appl. Organomet. Chem. 2012, 6, 528.
[9] Siddiqui, Z. N.; Musthafa, T. N. M.; Praveen, S.; Farooq, F. Med. Chem. Res. 2011, 20, 1438.
[10] (a) Yang, J.; Fu, T.; Long, Y.; Zhou, X. G. Chin. J. Org. Chem. 2017, 37, 1111(in Chinese). (杨军, 付婷, 龙洋, 周向葛, 有机化学, 2017, 37, 1111.)
(b) Zhou, Z.; Duan, J. F.; Mu, X. J.; Xiao, S. Y. Chin. J. Org. Chem. 2018, 38, 585(in Chinese). (周瞾, 段建凤, 穆小静, 肖尚友, 有机化学, 2018, 38, 585.)
(c) Zhao, S. Y.; Wang, Z. L. Chin. J. Org. Chem. 2016, 36, 862(in Chinese). (赵苏艳, 王祖利, 有机化学, 2016, 36, 862.)
(d) Xiao, S. Y.; Bi, J. F.; Mu, X. J.; Zhou, Z.; Xu, G. Chin. J. Org. Chem. 2017, 37, 2159(in Chinese). (肖尚友, 毕旌富, 穆小静, 周瞾, 徐广, 有机化学, 2017, 37, 2159.)
(e) Tan, J. X.; Guo, Y.; Zeng, F.; Chen, G. R.; Xie, L. Y.; He, W. M. Chin. J. Org. Chem. 2018, 38, 1740.
(f) Yang, X. J.; Mao, J. C.; Zhang, H.; Zhang, Y.; Mao, J. H. Chin. J. Org. Chem. 2018, 38, 2780.
(g) Li, W.; Yin, G.; Huang, L.; Xiao, Y.; Fu, Z.; Xin, X.; Liu, F.; Li, Z.; He, W. Green Chem. 2016, 18, 4879.
(h) Wu, C.; Xin, X.; Fu, Z. M.; Xie, L. Y.; Liu, K. J.; Wang, Z.; Li, W.; Yuan, Z. H.; He, W. M. Green Chem. 2017, 19, 1983.
(i) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
(j) Wu, C.; Lu, L. H.; Peng, A. Z.; Jia, G. K.; Peng, C.; Cao, Z.; Tang, L. L.; He, W. M.; Xu, X. H. Green Chem. 2018, 20, 3683.
(k) Xie, L. Y.; Duan, Y.; Lu, L. H.; Li, Y. J.; Peng, S.; Wu, C.; Liu, K. J.; Wang, Z.; He, W. M. ACS Sustainable Chem. Eng. 2017, 5, 10407.
(l) Xie, L. Y.; Peng, S.; Tan, J. X.; Sun, R. X.; Yu, X. Y.; Dai, N. N.; Tang, Z. L.; Xu, X. H.; He, W. M. ACS Sustainable Chem. Eng. 2018, 6, 16976.
(m) Li, L. X.; Dong, D. Q.; Hao, S. H.; Wang, Z. L. Tetrahedron Lett. 2018, 59, 1517.
(n) Bao, W. H.; Wu, C.; Wang, J. T.; Xia, W.; Chen, P.; Tang, Z. L.; Xu, X. H.; He, W. M. Org. Biomol. Chem. 2017, 15, 9889.
(o) Luo, F. H.; Long, Y.; Li, Z. K.; Zhou, X. G. Acta Chim. Sinica 2016, 74, 805(in Chinese). (罗飞华, 龙洋, 李正凯, 周向葛, 化学学报, 2016, 74, 805.)
[11] (a) Xu, S.; Wu, P.; Zhang, W. Org. Biomol. Chem. 2016, 14, 11389.
(b) Wu, P.; Xu, S.; Xu, H.; Hu, H.; Zhang, W. Tetrahedron Lett. 2017, 58, 618.
(c) Ma, C.; Fan, G.; Wu, P.; Li, Z.; Zhou, Y.; Ding, Q.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9889.
(d) Yan, S. Q.; Ding, N.; Zhang, W.; Wang, P.; Li, Y. X.; Li, M. Carbohydr. Res. 2012, 354, 6.
(e) Chun, Y. X.; Yan, S. Q.; Li, X. P.; Ding, N.; Zhang, W.; Wang, P.; Li, M.; Li, Y. X. Tetrahedron Lett. 2011, 52, 6196.
(f) Yan, S. Q.; Ding, N.; Zhang, W.; Wang, P.; Li, Y. X.; Li, M. J. Carbohydr. Chem. 2012, 31, 571.
[12] Liu, S.; Ni, Y. X.; Yang, J. G.; Hu, H. N.; Ying, A. G.; Xu, S. L. Chin. J. Chem. 2014, 32, 343.
[13] Gilanizadeh, M.; Zeynizadeh, B. New. J. Chem. 2018, 42, 8553.
[14] Krishnan, G. R.; Sreekumar, K. Eur. J. Org. Chem. 2008, 4763.
[15] Silver, R. F.; Kerr, K. A.; Frandsen, P. D.; Kelley, S. J.; Holmes, H. L. Can. J. Chem. 1967, 45, 1001.
[16] Shirini, F.; Daneshvar, D. RSC Adv. 2016, 6, 110190.
[17] Lin, Q.; Chen, P.; Fu, Y. P.; Zhang, Y. M.; Shi, B. B.; Zhang, P.; Wei, T. B. Chin. Chem. Lett. 2013, 24, 699.
[18] Singh, F. V.; Mangaonkar, S. R.; Kole, P. B. Synth. Commun. 2018, 48, 2169.
[19] Xu, D. Z.; Liu, Y. J.; Shi, S.; Wang, Y. M. Green Chem. 2010, 12, 514.

文章导航

/