黄酮苷的合成研究进展
收稿日期: 2018-11-01
修回日期: 2019-01-23
网络出版日期: 2019-02-19
基金资助
国家自然科学基金(No.21662005)资助项目.
Advances on Synthesis of Flavonoid Glycosides
Received date: 2018-11-01
Revised date: 2019-01-23
Online published: 2019-02-19
Supported by
Project supported by the National Natural Science Foundation of China (No. 21662005).
黄酮苷广泛存在于自然界植物,具有广泛的药理活性和潜在的药用价值,其合成方法值得研究,对2014年至2018年黄酮苷的合成进行综述.黄酮苷的合成主要包括化学合成和生物合成两大类,而化学合成又分为全合成和半合成,其中全合成主要有β-丙二酮酸化关环法(Baker-Venkataraman,BK-VK法)和查尔酮氧化关环法(Algar-Flynn-Oyamada,AFO法)两种经典方法;半合成是以芦丁、槲皮素、山萘酚、柚皮素等天然黄酮为原料.黄酮氧苷的化学合成目前常用的方法有三种:Koening-Knorr法、相转移催化法、糖基三氯乙酰亚胺酯法.黄酮碳苷的糖苷链的连接主要是通过O→C重排法.酶催化生物合成法目前常用的酶是糖基转移酶和糖苷合酶这两种酶.
徐焕基 , 李哲明 , 吴云秋 , 罗迪 , 邱莉 , 谢集照 , 李雪华 . 黄酮苷的合成研究进展[J]. 有机化学, 2019 , 39(7) : 1875 -1890 . DOI: 10.6023/cjoc201811002
Flavonoid glycoside is commonly found in natural plants, possesses diverse bioactivities and potential medicinal values, and its synthesis methods are worthy to be studied. The synthesis of flavonoid glycosides covering the literatures from 2014 to 2018 is reviewed. The flavonoid glycoside synthesis includes two major methods of chemosynthesis and biosynthesis. Chemosynthesis includes total synthesis and semi-synthesis. The total synthesis has two classical methods of the Baker- Venkataraman (BK-VK) reaction and the Algar-Flynn-Oyamada (AFO) reaction. The semi-synthesis is usually starting from natural flavonoid, such as rutin, quercetin, kaempferol, naringenin and so on. Moreover, the chemosynthesis of flavonoid O-glucoside has three prime methods, Koening-Knorr method, phase transfer catalysis method, and glycosyl trichloroacetimidate method. As for the chemosynthesis of flavonoid C-glycoside, its glycosidic linkage is mainly completed via the O→C rearrangement reaction. Currently, the glycosyltransferase and glycosynthase are usually employed in the enzyme-catalyzed biosynthesis of flavonoid glycosides.
[1] Zhang, T. T.; Wang, M.; Yang, L.; Jiang, J. G.; Zhao, J. W.; Zhu, W. J. Funct. Foods 2015, 18, 235.
[2] Shu, J.; Li, L.; Zhou, M.; Yu, J.; Peng, C.; Shao, F.; Liu, R.; Zhu, G.; Huang, H. Nat. Prod. Res. 2017, 23, 1.
[3] Huang, X.-X.; Wei, H.-L.; Pan, Y.-F. Food Ferment. Ind. 2013, 34, 140(in Chinese). (黄秀香, 韦汉龙, 盘玉芬, 食品工业科技, 2013, 34, 140.)
[4] Ekuadzi, E.; Dickson, R.; Fleischer, T.; Annan, K.; Pistorius, D.; Oberer, L.; Gibbons, S. Phytother. Res. 2014, 28, 784.
[5] Jiang, X.-W.; Bai, J.-P.; Tian, X.; Zhao, Q.-C. Chin. Trad. Herb. Drugs 2016, 47, 726(in Chinese). (蒋晓文, 白俊鹏, 田星, 赵庆春, 中草药, 2016, 47, 726.)
[6] Shi, Q.; Guan, F.-Q.; Sun, H.; Zhao, Y.-Y.; Wang, M.; Zhang, J.-H.; Feng, X.; Shan, Y. Food Sci. Technol. 2013, (6), 220(in Chinese). (师琪, 管福琴, 孙浩, 赵友谊, 王鸣, 张建华, 冯煦, 单宇, 食品科技, 2013, (6), 220.)
[7] Sun, L.; Peng, Q.; Qu, L.; Gong, L.; Si, J. Mol. Med. Rep. 2015, 11, 3094.
[8] Ekuadzi, E.; Dickson, S.; Fleischer.; Annan, K.; Pistorius, D.; Oberer, L.; Gibbons, S. Phytother. Res. 2014, 28, 784.
[9] Nawwar, M. A.; Hashem, A. N.; Hussein, S. A.; Swilam, N. F.; Becker, A.; Haertel, B.; Lindequist, U.; El-Khatib, A.; Linscheid, M. W. Pharmazie 2016, 71, 162.
[10] Kumamoto, H.; Matsubara, Y.; Iizuka, Y.; Okamoto, K.; Yokoi, K. Agric. Biol. Chem. 2014, 49, 2613.
[11] Nguyen, P. H.; Dung, V. V.; Bing, T. Z.; Kim, Y. H.; Min, B. S.; Mi, H. W. Arch. Pharmacal Res. 2014, 37, 1394.
[12] Du, X.-G.; Geng, M.-Y. Sci. Life 2011, 23, 671(in Chinese). (杜晓光, 耿美玉, 生命科学, 2011, 23, 671.)
[13] Montreuil, J. Adv. Carbohydr. Chem. Biochem. 1980, 37, 157.
[14] Winterburn, P. J.; Phelps, C. F. Nature 1972, 236, 147.
[15] Zhang, Y.-M. J. Northwest Univ. (Nat. Sci. Ed.) 2016, 46, 385(in Chinese). (张勇民, 西北大学学报(自然科学版), 2016, 46, 385.)
[16] Ranjbari, J.; Mokhtarzadeh, A.; Alibakhshi, A.; Tabarzad, M.; Hejazi, M.; Ramezani, M. Curr. Pharm. Des. 2017, 23, 6019.
[17] Hofer, B. Appl. Microbiol. Biotechnol. 2016, 100, 4269.
[18] Huang, D.-D.; Chen, H.-H.; Li, M.-G.; Huang, J.-B.; Li, Y.-R.; Wei, G. Tradit. Chin. Drug Res. Pharmacol. 2017, 28, 73(in Chinese). (黄丹丹, 陈欢欢, 黎梅桂, 黄俊彬, 李运容, 魏刚, 中药新药与临床药理, 2017, 28, 73.)
[19] Obmann, A.; Zehl, M.; Purevsuren, S.; Narantuya, S.; Reznicek, G.; Kletter, C.; Glasl, S. J. Sep. Sci. 2015, 34,292.
[20] Qiu, L.; Jiao, Y.; Xie, J. Z.; Huang, G. K.; Qiu, S. L.; Miao, J. H.; Yao, X. S. J. Asian Nat. Prod. Res. 2013, 16, 589.
[21] Kondo, T.; Yoshida, K.; Oyama, K. I. Curr. Org. Chem. 2011, 15, 2567.
[22] Wang, Z. L.; Yang, L. Y.; Yang, X. W. Synth. Commun. 2013, 43, 22.
[23] Mei, Q.-G.; Yuan, W.-C.; Wang, C. Chin. J. Org. Chem. 2015, 35, 70(in Chinese). (梅青刚, 袁伟成, 王淳, 有机化学, 2015, 35, 70.)
[24] Sun, J. S.; Laval, S.; Yu, B. Synthesis 2014, 46, 1030.
[25] Mohadeszadeh, M.; Iranshahi, M. Mini-Rev. Med. Chem. 2017, 17, 1377.
[26] Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
[27] Xiao, J.; Muzashvili, T. S.; Georgiev, M. I. Biotechnol. Adv. 2014, 32, 1145.
[28] Hofer, B. Appl. Microbiol. Biotechnol. 2016, 100, 4269.
[29] Ares, J. J.; Outt, P. E.; Kakodkar, S. V.; Buss, R. C.; Geiger, J. C. J. Org. Chem. 1993, 58, 7093.
[30] Song, G. Y.; Ahn, B. Z. Arch. Pharmacal Res. 1994, 17, 434.
[31] Wang, Q.-A.; Liao, T.-G.; Tang, J.-G.; Fan, H.-F. J. Hunan Univ. (Nat. Sci.) 2004, 31, 1(in Chinese). (汪秋安, 廖头根, 汤建国, 范华芳, 湖南大学学报(自科版), 2004, 31, 1.)
[32] Zacharia, J. T.; Hayashi, M. Carbohydr. Res. 2012, 348, 91.
[33] Kerl, T.; Berger, F.; Schmalz, H. G. Chemistry 2016, 22, 2935.
[34] Algarl, J.; Flynn, J. P. Proc. R. Ir. Acad. 1934, 42, 1.
[35] Oyamada. B. Chem. Soc. Jpn. 1934, 55, 2039.
[36] Oyamada, T. Tetrahedron 1935, 64, 988.
[37] Zhou, Q.; Wang, C.; Li, Y.-P.; Pu, W.-C. Chin. J. Appl. Environ. Biol. 2017, 24, 232(in Chinese). (周强, 王淳, 李玉萍, 蒲文臣, 应用与环境生物学报, 2017, 24, 232.)
[38] Shen, X.; Zhou, Q.; Xiong, W.; Pu, W.; Zhang, W.; Zhang, G.; Wang, C. Tetrahedron 2017, 73, 4822.
[39] Li, X.; Chen, G.; Zhang, X.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q. H. Bioorg. Med. Chem. Lett. 2016, 26, 4241.
[40] Wang, Q.-A.; Wang, S.-C.; Li, Y.; Shan, Y. J. Hunan Univ. (Nat. Sci.) 2015, 42, 53(in Chinese). (汪秋安, 王盛淳, 李悦, 单杨, 湖南大学学报(自然科学版), 2015, 42, 53.)
[41] Zhang, J.; Fu, X. L.; Yang, N.; Wang, Q. A. Sci. World J. 2013, 2013, 649485.
[42] Jian, J.; Fan, J.; Yang, H.; Lan, P.; Li, M.; Liu, P.; Gao, H.; Sun, P. J. Nat. Prod. 2018, 81, 371.
[43] Yamauchi, K.; Mitsunaga, T.; Batubara, I. Bioorg. Med. Chem. 2014, 22, 937.
[44] Liang, G.; Xu, B.; Wen, Z.; Hu, Z.; Yuan, J.; Chen, H.; Zhang, L. Heterocycles. 2016, 92, 1245.
[45] Xue, X.-N. Chem. Reag. 2018, 40, 465(in Chinese). (薛向南, 化学试剂, 2018, 40, 465.)
[46] Liu, J. D; Chen, L.; Cai, S. C.; Wang, Q. A. Carbohydr. Res. 2012, 357, 41.
[47] Park, K. S.; Kim, H.; Mi K. K.; Kim, K.; Chong, Y. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 317.
[48] Yang, W.; Sun, J.; Yang, Z.; Han, W.; Zhang, W. D., Yu B. Tetrahedron Lett. 2012, 43, 2773.
[49] Yang, W.; Sun J.; Lu, W.; Li, Y.; Shan, L.; Han, W.; Zhang, W.; Yu, B. J. Org. Chem. 2010, 75, 6879.
[50] Mei, Q.; Wang, C. Z.; Yuan, W.; Zhang, G. Beilstein J. Org. Chem. 2015, 11, 1220.
[51] Chen, J.; Huang, W.; Lian, G.; Lin, F. Carbohydr. Res. 2009, 344, 2245.
[52] Koenigs, W., Knorr, E. Eur. J. Inorg. Chem. 2010, 34, 957.
[53] Zhao, J.; Zhang, Z.-P.; Chen, H.-S.; Zhang, X.-Q.; Chen, X.-H. Acta Pharm. Sin. 1998, 33, 22(in Chinese). (赵晶, 张致平, 陈鸿珊, 张兴权, 陈湘红, 药学学报, 1998, 33, 22.)
[54] Vermes, B.; Farkas, L.; Nógrádi, M.; Wagner, H.; Dirscherl, R. Phytochemistry 1976, 15, 1320.
[55] Farkas, L.; Nógrådi, M.; Vermes, B.; Wolfner, A.; Wagner, H.; Hörhammer, L.; Krämer, H. Eur. J. Inorg. Chem. 1969, 102, 2583.
[56] Mezey-Vandor, G.; Farkas, L.; Kanzel, I.; Ndgradi, M. Chem. Ber. 1980, 113, 1945.
[57] Docampo, M.; Olubu, A.; Wang, X. Q.; Pasinetti, G.; Dixon, R. A. J. Agric. Food Chem. 2017, 65, 7607.
[58] Huang, W. H.; Chien, P. Y.; Yang, C. H.; Lee, A. R. Chem. Pharm. Bull. 2003, 34, 339.
[59] Li, Y. F.; Yu, B.; Sun, J. S.; Wang, R. X. Tetrahedron Lett. 2015, 56, 3816.
[60] Demetzos, C.; Skaltsounis, A. L.; Tillequin, F.; Koch, M. Planta Med. 1990, 207, 131.
[61] Wang, Q.-A.; Wu, Z.; Liu, L.; Zou, L.-H.; Luo, M. Chin. J. Org. Chem. 2010, 30, 1682(in Chinese). (汪秋安, 吴峥, 刘莉, 邹亮华, 罗茗, 有机化学, 2010, 30, 1682.)
[62] Cao, Z. L.; Qu, Y. Y.; Zhou, J. X.; Liu, W. W.; Yao, G. W. J. Carbohydr. Chem. 2015, 34, 28.
[63] Cao, Z. L.; Chen, J.; Zhu, D. D.; Yang, Z. N.; Teng, W. Q.; Liu, G. F.; Liu, B.; Tao, C. Z. J. Chem. Res. 2018, 42, 189.
[64] Nakagawa, A.; Tanaka, M.; Hanamura, S.; Takahashi, D.; Toshima, K. Angew. Chem., Int. Ed. 2015, 54, 10935.
[65] Du, Y.; Wei, G.; Lindhardt, R. J. Tetrahedron Lett. 2003, 44, 6887.
[66] Arai, M. A.; Yamaguchi, Y.; Ishibashi, M. Org. Biomol. Chem. 2017, 15, 5025.
[67] Zou, L.; Zhang, Z.; Chen, X.; Chen, H.; Zhang, Y.; Li, J.; Liu, Y. Tetrahedron 2018, 74, 2376.
[68] Liao, J. X.; Fan, N. L.; Liu, H.; Tu, Y. H.; Sun, J. S. Org. Biomol. Chem. 2015, 14, 1221.
[69] Hu, Y.; Tu, Y. H.; Liu, D. Y.; Liao, J. X.; Sun, J. S. Org. Biomol. Chem. 2016, 14, 4842.
[70] Yang, W.-Z.; Li, R.-Y.; Han, W.; Zhang, W.-D.; Sun, J.-S. Chin. J. Org. Chem. 2012, 32, 1067(in Chinese). (杨为准, 李荣耀, 韩伟, 张卫东, 孙建松, 有机化学, 2012, 32, 1067.)
[71] Carte, B. K.; Carr, S.; Debrosse, C.; Hemling, M. E.; Mackenzie, L.; Offen, P.; Berry, D. E. ChemInform 1991, 22, 1815.
[72] Lai, C. Y.; Tsai, A. C.; Chen, M. C.; Chang, L. H.; Sun, H. L.; Chang, Y. L.; Chen, C. C.; Teng, C. M.; Pan, S. L. Plos One 2012, 7, e42192.
[73] Hsieh, I.; Chang, S. Y.; Teng, C. M.; Chen, C. C.; Yang, C. R. J. Biomed. Sci. 2011, 18, 28.
[74] Yao, C. H.; Tsai, C. H.; Lee, J. C. J. Nat. Prod. 2016, 79, 1719.
[75] Wang, Y.; Liu, M.; Liu, L.; Xia, J. H.; Du, Y. G.; Sun, J. S. J. Org. Chem. 2018, 83, 4111.
[76] Yang, D.; Zhang, X.; Zhang, W.; Rengarajan, T. Drug Des., Dev. Ther. 2018, 12, 1303.
[77] Ku, S. K.; Bae, J. S. Can. J. Physiol. Pharmacol. 2016, 94, 287.
[78] Shie, J. J.; Chen, C. A.; Lin, C. C.; Ku, A. F.; Cheng, T. J.; Fang, J. M.; Wong, C. H. Org. Biomol. Chem. 2010, 8, 4451.
[79] Sato, S.; Akiya, T.; Nishizawa, H.; Suzuki, T. Carbohydr. Res. 2006, 341, 964.
[80] Ho, T. C.; Kamimura, H.; Ohmori, K.; Suzuki, K. Org. Lett. 2016, 18, 4488.
[81] Mao, D.-B.; Huang, S.-L.; Chen, Y.-S. China Surf. Deterg. Cosmet. 2007, 37, 321(in Chinese). (毛多斌, 黄顺利, 陈永森, 日用化学工业, 2007, 37, 321.)
[82] Hofer, B. Appl. Microbiol. Biotechnol. 2016, 100, 4269.
[83] Choung, W. J.; Hwang, S. H.; Ko, D. S.; Kim, S. B.; Kim, S. H.; Jeon. S. H.; Choi, H. D.; Lim, S. S.; Shim, J. H. J. Agric. Food Chem. 2017, 65, 2760.
[84] Kim, S. Y.; Lee, H. R.; Park, K. S.; Kim, B. G.; Ahn, J. H. Appl. Microbiol. Biotechnol. 2015, 99, 2233.
[85] Liang, C.; Zhang, Y.; Jia, Y.; Wang, W.; Li, Y.; Lu, S.; Jin, J. M.; Tang, S. Y. Sci Rep. 2016, 6, 21051.
[86] Pandey, R. P.; Parajuli, P.; Koirala, N.; Park, J. W.; Sohng, J. K. Appl. Environ. Microbiol. 2013, 79, 6833.
[87] Gurung, R. B.; Kim, E. H.; Oh, T. J.; Sohng, J. K. Mol. Cells 2013, 36, 355.
[88] Liu, X. G.; Lin, C. L.; Ma, X. D.; Yan, Y.; Wang, J. Z.; Zeng, M. Front. Recent Dev. Plant Sci. 2018, 9, 166.
[89] Feng, J.; Zhang, P.; Cui, Y.; Li, K.; Qiao, X.; Zhang, Y. T.; Li, S. M.; Cox, R. J.; Wu, B.; Ye, M. Adv. Synth. Catal. 2017, 359, 955.
[90] Han, S. H.; Kim, B. G.; Yoon, J. A.; Chong, Y.; Ahn, J. H. Appl. Environ. Microbiol. 2014, 80, 2754.
[91] Pandey, R. P.; Parajuli, P.; Gurung, R. B.; Sohng, J. K. Enzyme Microb. Technol. 2016, 91, 26.
[92] Simkhada, D.; Lee, H. C.; Sohng, J. K. Biotechnol. Bioeng. 2010, 107, 154.
[93] Kim, B. G.; Su, H. S.; Ahn, J. H. Appl. Microbiol. Biotechnol. 2012, 93, 2447.
[94] Brazierhicks, M.; Evans, K. M.; Gershater, M. C.; Puschmann, H.; Steel, P. G.; Edwards, R. J. Biol. Chem. 2009, 284, 17926.
[95] Du, Y.; Chu, H.; Chu, I. K.; Lo, C. Plant Physiol. 2010, 154, 324.
[96] Sasaki, N.; Nishizaki, Y.; Yamada, E.; Tatsuzawa, F.; Nakatsuka, T.; Takahashi, H.; Nishihara, M. FEBS Lett. 2016, 589, 182.
[97] Shrestha, A.; Pandey, R. P.; Dhakal, D.; Parajuli, P.; Sohng, J. K. Appl. Microbiol. Biotechnol. 2018, 102, 1251.
[98] Vanegas, K. G.; Larsen, A. B.; Eichenberger, M.; Fischer, D.; Mortensen, U. H.; Naesby, M. Microb. Cell Fact. 2018, 17, 107.
[99] Du, Y.; Chu, H.; Wang, M.; Chu, I. K.; Lo, C. J. Exp. Bot. 2010, 61, 983.
[100] Morohashi, K.; Grotewold, E. Plant Cell. 2012, 24, 2745.
[101] Hirade, Y.; Kotoku, N.; Terasaka, K.; Saijo-Hamano, Y.; Fukumoto, A.; Mizukami, H. FEBS Lett. 2015, 589, 1778.
[102] Gutmann, A.; Nidetzky, B. Pure Appl. Chem. 2013, 85, 1865.
[103] Hao, B.; Caulfield, J. C.; Hamilton, M. L.; Pickett, J. A.; Midega, C. A.; Khan, Z. R.; Wang, J. R. Org. Biomol. Chem. 2015, 13, 11663.
[104] Ito, T.; Fujimoto, S.; Suito, F.; Shimosaka, M.; Taguchi, G. Plant J. Cell Mol. Biol. 2017, 91, 187.
[105] Nagatomo, Y.; Usui, S.; Ito, T.; Kao, A.; Shimosaka, M.; Taguchi, G. Plant J. 2014, 80, 437.
[106] Mackenzie, L. F.; Wang, Q.; Warren, R. A. J.; Withers, S. G. J. Am. Chem. Soc. 1998, 120, 5583.
[107] Malet, C.; Planas, A. FEBS Lett. 1998, 440, 208.
[108] Moracci, M.; Trincone, A.; Perugino, G.; Ciaramella, M.; Rossi, M. Biochemistry 1998, 37, 17262.
[109] Hayes, M. R.; Pietruszka, J. Molecules 2017, 22, 1434.
[110] Kobayashi, S.; Shoda, S.; Uyama, H. Adv. Polym. Sci. 2012, 121, 217.
[111] Díez-Municio, M.; Kolida, S.; Herrero, M.; Rastall, R. A.; Moreno, F. J. J. Funct. Foods 2016, 20, 532.
[112] Ducros, V. M.; Tarling, C. A.; Zechel, D. L.; Brzozowski, A. M., Frandsen, T. P.; Ossowski, I. V.; Schülein, M.; Withers, S. G.; Davies, G. J. Chem. Biol. 2003, 10, 619.
[113] Yang, M.; Davies, G. J.; Davis, B. G. Angew. Chem. 2007, 46, 3885.
/
〈 |
|
〉 |