研究论文

光诱导原子经济的迭代型末端炔烃氢三氟甲基化和远程C(sp3)-H键官能团化

  • 刘涛 ,
  • 屈川华 ,
  • 谢劲 ,
  • 朱成建
展开
  • a 南京大学化学化工学院 南京 210023;
    b 金属有机化学国家重点实验室 上海有机化学研究所 上海 200032

收稿日期: 2019-01-16

  修回日期: 2019-01-24

  网络出版日期: 2019-02-19

基金资助

国家自然科学基金(Nos.21702098,21732003,21672099)、青年千人资助项目和和本科有机化学实验课程开放课题资助项目.

Photoinduced Atom-Economical Iterative Hydrotrifluoromethylation of Terminal Alkynes and Remote C(sp3)-H Functionalization

  • Liu Tao ,
  • Qu Chuanhua ,
  • Xie Jin ,
  • Zhu Chengjian
Expand
  • a School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032

Received date: 2019-01-16

  Revised date: 2019-01-24

  Online published: 2019-02-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21702098, 21732003, 21672099), the 1000-Youth Talents Plan and the Open Training Program of Undergraduate Organic Experiment Course.

摘要

使用Togni试剂的三氟甲基化反应通常会产生等物质的量的邻碘苯酸作为副产物.使用Togni试剂作为双官能团化试剂,通过氢原子转移的策略开发了一种可见光诱导的、原子和步骤经济的芳香炔的氢三氟甲基化与远程的α-C(sp3)-H的苯甲酸化接力反应.这两种转化的结合,不仅实现了100%的原子转化率,而且解决了芳香炔氢三氟甲基化的区域选择性问题.这一新型的策略提供了制备一系列高官能团化的含三氟甲基烯烃的重要途径.

本文引用格式

刘涛 , 屈川华 , 谢劲 , 朱成建 . 光诱导原子经济的迭代型末端炔烃氢三氟甲基化和远程C(sp3)-H键官能团化[J]. 有机化学, 2019 , 39(6) : 1613 -1622 . DOI: 10.6023/cjoc201901021

Abstract

Trifluoromethylation using Togni reagents usually releases one equivalent of iodobenzoats as wasteful byproducts. A visible-light-mediated, atom-and step-economical hydrotrifluoromethylation of aromatic alkynes and remote benzoyl-oxylation of α-C(sp3)-H bond of ether with Togni reagent as a bifunctional reagent by means of hydrogen atom transfer strategy was disclosed. The combination of two organic transformations into one reaction not only brings 100% atom economy but also addresses the challenge of stereoselective hydrotrifluoromethylation of aromatic alkynes. This unprecedented protocol offers an important access to a wide range of highly functionalized CF3-containing alkenes with great potential for post-modification.

参考文献

[1] Selected reviews:
(a) Bergman, R. G. Nature 2007, 446, 391.
(b) Lyons, T. W.; Sanford, M. Chem. Rev. 2010, 110, 1147.
[2] For selected reviews on redox-neutral C(sp3)-H bond functionalization, see:
(a) Peng, B.; Maulide, N. Chem.-Eur. J. 2013, 19, 13274.
(b) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010.
(c) Kwon, S. J.; Kim, D. Y. Chem. Rec. 2016, 16, 1191.
(d) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
For selected examples on redox-neutral C(sp3)-H bond functionalization:
(e) Suh, C. W.; Kwon, S. J.; Kim, Y. Org. Lett. 2017, 19, 1334.
(f) Zhang, S.; Cheng, B.; Wang, S.; Zhou, L.; Tung, C.-H.; Wang, J.; Xu, Z. Org. Lett. 2017, 19, 1072.
(g) Richers, M. T.; Breugst, M.; Platonova, A. Y.; Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, D. J. Am. Chem. Soc. 2014, 136, 6123.
(h) Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2014, 136, 3744.
(i) Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 10633.
(j) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424.
(k) Li, H.; Ren, X.-W.; Zhao, W.-T.; Tang, X.-Y.; Wang. G.-W. Chin. J. Org. Chem. 2017, 37, 2287.
(l) Zhang, W.-M.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2015, 35, 1820.
[3] Selected reviews:
(a) Hu, X.; Chen, J.; Xiao, W.; Angew. Chem., Int. Ed. 2017, 56, 1960.
(b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
Recent examples:
(c) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem. Int. Ed. 2016, 55, 1872.
(d) Wang, C.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 13495.
(e) Martinez, C.; Muniz, K. Angew. Chem. Int. Ed. 2015, 54, 8287.
(f) OBroin, C. Q.; Fernández, P.; Martínez, C.; Muñiz, K. Org. Lett. 2016, 18, 436.
(g) Chu, J. C.; Rovis, T. Nature 2016, 539, 272.
(h) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
(i) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Yan, B.; Liu, X.-Y. Angew. Chem. Int. Ed. 2015, 154, 4041.
(j) Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Y.-P. Xiong,; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem. Int. Ed. 2014, 53, 11890.
(k) Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Org. Lett. 2016, 18, 345.
(l) Nie, X.; Cheng, C.; Zhu, G. Angew. Chem. Int. Ed. 2017, 56, 1898.
(m) Huang, L.; Ye, L.; Li, X.; Li, Z.; Lin, J.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
(n) Ratushnyy, M.; Parasram, M.; Wang Y.; Gevorgyan, V. Angew. Chem. Int. Ed. 2018, 57, 2712.
[4] Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
[5] Selected reviews on Togni reagents, see:
(a) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(b) Wang, X.; Studer, A. Acc. Chem. Res. 2017, 50, 1712.
(c) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(d) Yu, T.; Chen, S.; Gu. Q.-S.; Lin, J.-S.; Liu, X.-Y. Tetrahedron Lett. 2018, 59, 203.
[6] Selected examples on the trifluoromethylation with Togni reagents, see:
(a) Parsons, A. T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 9120.
(b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
(c) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem. Int. Ed. 2012, 51, 4577.
(d) Zhu, N.; Wang, F.; Chen, P.; Ye, J.; Liu, G. Org. Lett. 2015, 17, 3580.
(e) Huang, L.; Lin, J.; Tan, B.; Liu, X. ACS Catal. 2015, 5, 2826.
(f) Kawamura, S.; Egami, H.; Sodeoka, M. J. Am. Chem. Soc. 2015, 137, 4865.
(g) Yu, L.; Xu, Q.; Tang, X.; Shi, M. ACS Catal. 2016, 6, 526.
(h) Lin, J.; Dong, X.; Li, T.; Jiang, N.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
(i) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
(j) Brantley, J. N.; Samant, A. V.; F. Toste, D. ACS Cent. Sci. 2016, 2, 341.
(k) Cheng, Y.; X. Dong,; Gu, Q.; Yu, Z.; Liu, X.-Y. Angew. Chem. Int. Ed. 2017, 56, 8883.
(l) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904.
(m) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem. Int. Ed. 2014, 53, 7144.
(n) Yu, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, B.-Z.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022.
(o) Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Yu, L.; Yu, D.-G. ACS Catal. 2017, 7, 8324.
(p) Wang, Q.; Gao, K.-C.; Zou, J.-P.; Zeng, R.-S. Chin. J. Org. Chem. 2018, 38, 863.
[7] Although in a small portion of cases 2-iodobenzoic acid was considered to recover, extra steps before purification are needed.
[8] (a) Modha, S. G.; Greaney, M. F. J. Am. Chem. Soc. 2015, 137, 1416.
(b) Tesky, C. J.; Sohel, S. M. A.; Bunting, D. L.; Modha, S. G.; Greaney, M. F. Angew. Chem. Int. Ed. 2017, 56, 5263.
(c) Buendia, J.; Darses, B.; Dauban, P. Angew. Chem. Int. Ed. 2015, 54, 5697.
(d) Buendia, J.; Grelier, G.; Darses, B.; Jarvis, A. G.; Taran, F.; Dauban, P. Angew. Chem. Int. Ed. 2016, 55, 7530.
(e) Wu, Y.; Izquierdo, S.; Vidossich, P.; Lledos, A.; Shafir, A. Angew. Chem. Int. Ed. 2016, 55, 7152.
(f) Wu, J.; Deng, X.; Hirao, H.; Yoshikai, N. J. Am. Chem. Soc. 2016, 138, 9105.
(g) Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2016, 138, 2190.
(h) Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2017, 139, 8420.
(i) Wang, Y.; Zhang, L.; Yang, Y.; Zhang, P.; Du, Z.; Wang, C. J. Am. Chem. Soc. 2013, 135, 18048.
[9] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Ourserm, S.; Moore, R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[10] (a) Xie, J.; Zhang, T.; Chen, F.; Mehrkens, N.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 2934.
(b) Xu, P.; Wang, G.; Zhu, Y.; Li, W.; Cheng, Y.; Li, S.; Zhu, C. Angew. Chem. Int. Ed. 2016, 55, 2939.
(c) Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 9416.
(d) Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2017, 56, 7266.
(e) Zhou, N.; Yuan, X.-A.; Zhao, Y.; Xie, J.; Zhu, C. Angew. Chem. Int. Ed. 2018, 57, 3990.
(f) Xu, W.; Ma, J.; Yuan, X.-A.; Dai, J.; Xie, J.; Zhu, C. Angew. Chem. Int. Ed. 2018, 57, 10357.
(g) Zhang, M.; Yuan, X.-A., Zhu, C.; Xie, J. Angew. Chem. Int. Ed. 2019, 58, 312.
(h) Zhang, M.; Xie, J.; Zhu, C. Nat. Commun. 2018, 9, 3517.
[11] (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(b) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
(c) Chen, Y.-Y.; Lu, L.-Q.; Yu, D.-L.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
(d) Sun, X.-Y.; Yu, S.-Y. Chin. J. Org. Chem. 2016, 36, 239.
(e) Li, J.; Chen, J.-Z.; Huang, W.-H.; Cheng, X. Chin. J. Org. Chem. 2018, 38, 1507.
[12] Ochiai, M.; Yamane, S.; Hoque, M. M.; Miyamoto, M.; Saito, K. Chem. Commun. 2012, 48, 5280.
[13] Selected examples:
(a) Iqbal, N.; Jung, J.; Park, S.; Cho, E. J. Angew. Chem. Int. Ed. 2014, 53, 359.
(b) Choi, S.; Kim, Y.; Kim, S.; J. Yang, W.; Kim, S. W.; Cho, E. J. Nat. Commun. 2014, 5, 4881.
(c) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962.
(d) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem. Eur. J. 2015, 21, 7648.
[14] (a) Janson, P. G.; Ghoneim, I.; Ilchenko, N. O.; Szabo, K. J. Org. Lett. 2012, 14, 2882.
(b) Lu, D.; Zhu, C.; Xu, H. Chem. Sci. 2013, 4, 2478.
(c) Shimizu, H.; Egami R.; Usui, Y.; Sodeoka, M. J. Fluorine Chem. 2014, 167, 172.
[15] For a review on Pd-catalyzed cross-coupling reactions:Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
[16] Gai, R.; Pinheiro, R. C.; Iveto, J. S. S.; Lglesias, B. A.; Acunha, T. V.; Back D. F.; Zeni, G. Green. Chem. 2016, 18, 6648.

文章导航

/