茂钛全氟丁基磺酸盐/锌粉体系高效催化不对称单硒醚合成
收稿日期: 2018-12-19
修回日期: 2019-02-03
网络出版日期: 2019-02-22
基金资助
国家自然科学基金(No.21802093)、山西省青年科学基金(No.201701D221035)、山西医科大学博士启动基金(No.03201501)资助项目.
Efficient Synthesis of Unsymmetrical Selenides Promoted by Titanocene Perfluorobutanesulfonate/Zinc Catalytic System
Received date: 2018-12-19
Revised date: 2019-02-03
Online published: 2019-02-22
Supported by
Project supported by the the National Natural Science Foundation of China (No. 21802093), the Shanxi Province Science Foundation for Youths (No. 201701D221035), and the PhD Start-up Foundation of Shanxi Medical University (No. 03201501).
在室温条件,氮气氛围下,以商用四氢呋喃(THF)为溶剂,10 mol%的茂钛全氟丁基磺酸盐(1·H2O·THF)/锌粉(1.2 equiv.)体系催化二芳基二硒醚与溴代烷反应,高产率地合成了一系列不对称的单硒醚化合物.其可能机理为,锌粉还原Cp2TiIV(OPf)2(Pf=SO2C4F9)生成三价钛配合物Cp2TiⅢOPf,然后Cp2TiⅢOPf与ArSeSeAr反应形成中间体Cp2TiIVSeAr(OPf),随后与溴代烷反应生成不对称单硒醚化合物.首次报道1·H2O·THF/Zn体系催化合成不对称单硒醚,该方法具有反应条件温和,操作简单,反应收率高等优点.
王灵晓 , 李宁波 , 王浩江 , 刘文 , 刁海鹏 , 许新华 . 茂钛全氟丁基磺酸盐/锌粉体系高效催化不对称单硒醚合成[J]. 有机化学, 2019 , 39(6) : 1802 -1807 . DOI: 10.6023/cjoc201812033
In the presence of 10 mol% titanocene perfluorobutanesulfonate (1·H2O·THF), reductive cleavage Se-Se bond by zinc dust (1.2 equiv.) at room temperature led to nucleophilic selenium anion species, which reacted with bromoalkanes to afford unsymmetrical selenides in good to excellent yield using commercial tetrahydrofuran (THF) as solvent under N2 atmosphere. The possible reaction mechanism is that zinc dust reduces Cp2TiIV(OPf)2 (Pf=SO2C4F9) to produce Cp2TiⅢOPf, which reacts with diaryl diselenides to form the intermediate Cp2TiIVSeAr(OPf). Then it further reacts with bromoalkanes to produce unsymmetrical selenides. In this paper, the synthesis of asymmetrical selenides catalyzed by 1·H2O·THF/Zn system is first reported. This method has the advantages of mild reaction conditions, simple operation and high yield.
[1] Sarma, B. L.; Mugesh, G. J. Am. Chem. Soc. 2005, 127, 11477.
[2] Bhadra, S.; Saha, A.; Ranu, B. C. J. Org. Chem. 2010, 75, 4864.
[3] Zhang, X. P.; Miao, J. H.; Sun, Y. B.; Chin. J. Org. Chem. 2009, 29, 1555 (in Chinese).(张晓鹏, 苗江欢, 孙玉标, 有机化学, 2009, 29, 1555.)
[4] Sohn, T. I.; Kim, M. J.; Kim, D. J. J. Am. Chem. Soc. 2010, 132, 12226.
[5] Li, Y. Y.; Chen, S. H.; Su, L.; Li, J. H.; Xu, X. H. Chin. J. Org. Chem. 2013, 33, 1999 (in Chinese).(李媛媛, 陈四海, 苏柳, 李建华, 许新华, 有机化学, 2013, 33, 1999).
[6] Narayanaperumal, S.; Alberto, E. E.; Gul, K.; Kawasoko, C. Y.; Dornelles, L.; Rodrigues, O. E. D.; Braga, A. L. Tetrahedron Lett. 2011, 67, 4723.
[7] Banerjee, S.; Adak, L.; Ranu, B. C. Tetrahedron Lett. 2012, 53, 2149.
[8] Gogoi, P.; Hazarika, S.; Sarma, M. J.; Sarma, K. Tetrahedron 2014, 70, 7484.
[9] Braga, A. L.; Schneider, P. H.; Paixão, M. W.; Deobald, A. M. Tetrahedron Lett. 2006, 47, 7195.
[10] Clive, D. L. J. Tetrahedron, 1978, 34, 1049.
[11] Xu, X. H.; Chen, W. L.; Huang, X. Chin. J. Synth. Chem. 2000, 8, 281 (in Chinese).(许新华, 陈万里, 黄宪, 合成化学, 2000, 8, 281.)
[12] Su, W. K.; Zhang, Y. M.; Li, Y. S. Chin. J. Chem. 2001, 19, 381.
[13] Lu, G. L; Zhang, Y. M. Synth. Commun. 1998, 28, 4479.
[14] Sun, P. P.; Xiao, Y. P.; Shi, B. C. Chin. Chem. Lett. 2000, 11, 1037.
[15] Chen, R. E.; Su, W. K.; Zhong, W. H. J. Chem. Res. 2005, 2005, 620.
[16] Zhao, X. D.; Yu, Z. K.; Yan, S. G.; Wu, S. Z.; Liu, R.; He, W.; Wang, L. D. J. Org. Chem. 2005, 70, 7338.
[17] Wang, Z.; Mo, H.; Bao, W. Synlett 2007, 91.
[18] Chen, R. E.; Su, W. K. J. Indian Chem. Soc. 2005, 82, 958.
[19] Nishino, T.; Okada, M.; Kuroki, T.; Watanabe, T.; Nishiyama, Y.; Sonoda, N. J. Org. Chem. 2002, 67, 8696.
[20] Ranu. B. C.; Mandal, T. J. Org. Chem, 2004, 59, 5793.
[21] Ouyang. Y. J.; Guo, C. X.; Qiu, R. H; Li. N. B.; Chen, J. Y.; Xu, X. H. Chin. J. Org. Chem. 2015, 35, 731 (in Chinese).(欧阳跃军, 郭翠霞, 邱仁华, 李宁波, 陈锦杨, 许新华, 有机化学, 2015, 35, 731.)
[22] Thomas, J.; Klahn, M.; Spannenberg, A.; Beweries, T. Dalton Trans. 2013, 42, 14668.
[23] Gansäuer, A.; Hildebrandt, S.; Michelmann, A.; Dahmen, T.; von Laufenberg, D.; Kube, C.; Fianu, G. D.; Flowers, R. A. Angew. Chem., Int. Ed. 2015, 54, 7003.
[24] Hildebrandt, S.; Gansäuer, A. Angew. Chem., Int. Ed. 2016, 55, 9719.
[25] Hollis, T. K.; Robinson, N. P.; Bosnich, B. Tehahedron Lett. 1992, 33, 6423.
[26] An, D. L.; Peng, Z. H.; Orita, A.; Kurita, A.; Man-e, S.; Ohkubo, K.; Li, X. S.; Fukuzumi, S.; Otera, J. Chem.-Eur. J. 2006, 12, 1642.
[27] Li, N. B.; Wang, J. Y.; Zhang, X. H.; Qiu, R. H.; Wang, X.; Chen, J. Y.; Yin, S. F.; Xu, X. H. Dalton Trans. 2014, 43, 11696.
[28] Qiu, R. H.; Xu, X. H.; Peng, L. F.; Zhao, Y. L.; Li, N. B.; Yin, S. F. Chem.-Eur. J. 2012, 18, 6172.
[29] Llorca, M.; Farré, M.; Tavano, M.; Alonso, S. B.; Koremblit, G.; Barceló, D. Environ. Pollut. 2012, 163, 158.
[30] Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Toxicol. Sci. 2007, 99, 366.
[31] Li, N. B.; Yao, J.; Wang, L. X.; Wei, J. C.; Liu, W.; Liu, W. Q.; Xu, X. H.; Liang, Z. W. Inorg. Chem. Commun. 2018, 98, 99.
[32] Tang, Z.; Jiang, Q. T.; Peng, L. F.; Xu, X. H.; Li, J.; Qiu, R. H.; Au, C. T. Green Chem. 2017, 19, 5396.
[33] Gul, K.; Narayanaperumal, S.; Dornelles, L.; Rodrigues, O. E. D. Tetrahedron Lett. 2011, 52, 3592.
[34] Chen, Q. R.; Wang, P. P.; Yan, T.; Cai M. Z. J. Organomet. Chem. 2017, 840, 38.
[35] Gianino, J. B.; Ashfeld, B. L. J. Am. Chem. Soc. 2012, 134, 18217.
[36] Kazunori H.; Hideki, S.; Yu, K.; Jun-ichi M.; Soichi, S.; Toshio, S.; Nobumasa, K. Chem. Lett. 2007, 36, 826.
/
〈 |
|
〉 |