研究简报

钯催化下稳定磷叶立德与烯丙基醇的脱水偶联反应

  • 马献涛 ,
  • 于静 ,
  • 马瑞甜 ,
  • 燕然 ,
  • 张振雷
展开
  • a 信阳师范学院化学化工学院 信阳 464000;
    b 阜阳师范学院化学与材料工程学院 阜阳 236037

收稿日期: 2018-12-31

  修回日期: 2019-01-27

  网络出版日期: 2019-02-22

基金资助

河南省高等学校重点科研项目(No.19B150018)、信阳师范学院“南湖学者奖励计划”青年项目和信阳师范学院青年骨干教师资助计划(No.2018GGJS-05)资助项目.

Palladium-Catalyzed Dehydrative Cross Couplings of Stabilized Phosphorus Ylides with Allylic Alcohols

  • Ma Xiantao ,
  • Yu Jing ,
  • Ma Ruitian ,
  • Yan Ran ,
  • Zhang Zhenlei
Expand
  • a College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000;
    b School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang 236037

Received date: 2018-12-31

  Revised date: 2019-01-27

  Online published: 2019-02-22

Supported by

Project supported by the Scientific Research Project of Henan Province (No. 19B150018), the Nanhu Scholars Program for Young Scholars of Xinyang Normal University and the Young Core Instructor Program of Xinyang Normal University (No. 2018GGJS-05).

摘要

报道了钯催化下酮基稳定的磷叶立德与烯丙基醇一锅法的烯丙化-Wittig反应.研究表明,在5 mol%四(三苯基膦)钯和20 mol%硼酸的共催化下,以52%~95%的收率得到官能化1,4-二烯化合物.该方法还可以进一步拓展到酯基以及氰基稳定的磷叶立德来合成对应的1,4-二烯化合物.

本文引用格式

马献涛 , 于静 , 马瑞甜 , 燕然 , 张振雷 . 钯催化下稳定磷叶立德与烯丙基醇的脱水偶联反应[J]. 有机化学, 2019 , 39(3) : 830 -835 . DOI: 10.6023/cjoc201812051

Abstract

A dehydrative cross coupling of ketone-stabilized phosphorus ylides with the readily available allylic alcohols followed by an one-pot Wittig reaction is developed. A range of functional 1,4-dienes could be obtained in 52%~95% isolated yields in the presence of 5 mol% Pd(PPh3) 4 and 20 mol% B(OH) 3. The same method can be extended to ester or nitrile-stabi-lized phosphorus ylides, affording the corresponding 1,4-dienes in moderate yields.

参考文献

[1] (a) Jie, M. S. F. L. K.; Pasha, M. K.; Syed-Rahmatulla, M. S. K. Nat. Prod. Rep. 1997, 14, 163.
(b) Fürstner, A.; Nevado, C.; Waser, M.; Tremblay, M.; Chevrier, C.; Teplý, F.; Aïssa, C.; Moulin, E.; Müller, O. J. Am. Chem. Soc. 2007, 129, 9150.
(c) Wilson, M. C.; Nam, S.-J.; Gulder, T. A. M.; Kauffman, C. A.; Jensen, P. R.; Fenical, W.; Moore, B. S. J. Am. Chem. Soc. 2011, 133, 1971.
[2] (a) Macklin, T. K.; Micalizio, G. C. Nat. Chem. 2010, 2, 638.
(b) Sharma, R. K.; RajanBabu, T. V. J. Am. Chem. Soc. 2010, 132, 3295.
(c) Trost, B. M.; Luan, X. J. Am. Chem. Soc. 2011, 133, 1706.
(d) McCammant, M. S.; Liao, L.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 4167.
(e) Jin, W.; Yang, Q.; Wu, P.; Chen, J.; Yu, Z. Adv. Synth. Catal. 2014, 360, 2097.
[3] (a) Miyaura, N.; Yano, T.; Suzuki, A. Tetrahedron Lett. 1980, 21, 2865.
(b) Kabalka, G. W.; Al-Masum, M. Org. Lett. 2006, 8, 11.
(c) Lee, Y.; Akiyama, K.; Gillingham, D. G.; Brown, M. K.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 446.
(d) Akiyama, K.; Gao, F.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2010, 49, 419.
(e) Gao, F.; Lee, K. P.; McGrath, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 14315.
(f) Gao, F.; Carr, J. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2012, 51, 6613.
(g) Huang, Y.; Fañanás-Mastral, M.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2013, 49, 3309.
(h) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 994.
(i) Gao, F.; Carr, J. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 2149.
(j) Sidera, M.; Fletcher, S. P. Chem. Commun. 2015, 51, 5044.
(k) Zhurkin, F. E.; Hu, X. J. Org. Chem. 2016, 81, 5795.
(l) Yang, B.; Wang, Z.-X. J. Org. Chem. 2017, 82, 4542.
[4] (a) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081.
(b) Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880.
(c) Matsubara, R.; Jamison, T. F. Chem. Asian J. 2011, 6, 1860.
(d) Ye, K.-Y.; He, H.; Liu, W.-B.; Dai, L.-X.; Helmchen, G.; You, S.-L. J. Am. Chem. Soc. 2011, 133, 19006.
(e) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 13 6, 2006.
(f) Gumrukcu, Y.; de Bruin, B.; Reek, J. N. H. Chem.-Eur. J. 2014, 20, 10905.
[5] (a) Thadani, A. N.; Rawal, V. H. Org. Lett. 2002, 4, 4317.
(b) Chen, X.; Chen, D.; Lu, Z.; Kong, L.; Zhu, G.-G. J. Org. Chem. 2011, 76, 6338.
(c) Wen, Y.; Jiang, H.-F. Tetrahedron Lett. 2013, 54, 4034.
(d) Todd, D. P.; Thompson, B. B.; Nett, A. J.; Montgomery, J. J. Am. Chem. Soc. 2015, 137, 12788
(e) Mateos, J.; Rivera-Chao, E.; Fañanás-Mastral, M. ACS Catal. 2017, 7, 5340.
[6] For rare examples for terminal skipped dienes synthesis, see:(a) Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron Lett. 2001, 42, 85.
(b) Basavaiah, D.; Sharada, D. S.; Kumaragurubaran, N.; Reddy, R. M. J. Org. Chem. 2002, 67, 7135.
(c) Li, Y.-Q.; Wang, H.-J.; Huang, Z.-Z. J. Org. Chem. 2016, 81, 4429.
[7] For reviews, see:(a) Edmonds, M.; Abell, A. In Modern Carbonyl Olefination, Ed.:Takeda, T., Wiley-VCH, Weinheim, Germany, 2004, pp. 1~17.
(b) Ju, Y. In Modern Organic Reactions, Vol. 3, Eds.:Hu, Y.-F.; Lin, G.-Q., Chemical Industry Press, Beijing, 2008, pp. 413~460(in Chinese). (巨勇, 现代有机反应, 主编:胡跃飞, 林国强, 第3卷, 化学工业出版社, 北京, 2008, pp. 413~460.)
(c) Gu, Y.; Tian, S.-K. Top. Curr. Chem. 2012, 327, 197.
[8] (a) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Chem.-Eur. J. 2010, 16, 7376.
(b) Ma, X.-T.; Wang, Y.; Dai, R.-H.; Liu, C.-R.; Tian, S.-K. J. Org. Chem. 2013, 78, 11071.
[9] For reviews, see:(a) Bandini, M. Angew. Chem., Int. Ed. 2011, 50, 994.
(b) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467.
(c) Butta, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
(d) Ferraccioli, R.; Pignataro, L. Curr. Org. Chem. 2015, 19, 106. For selected recent examples:
(e) Shen, D.; Chen, Q.; Yan, P.; Zeng, X.; Zhong, G. Angew. Chem., Int. Ed. 2017, 129, 3290.
(f) Wu, F.-P.; Peng, J.-B.; Fu, L.-Y.; Qi, X.; Wu, X.-F. Org. Lett 2017, 19, 5474.
(g) Su, Y.-L.; Han, Z.-Y.; Li, Y.-H.; Gong, L.-Z. ACS Catal. 2017, 7, 7917.
(h) Jia, X.-G.; Guo, P.; Duan, J.; Shu, X.-Z. Chem. Sci. 2018, 9, 640.
[10] Ma, X.; Yu, J.; Han, C.; Zhou, Q.; Ren, M.; Li, L.; Tang, L. Adv. Synth. Catal. 2019, https://doi.org/10.1002/adsc.201801266.
[11] (a) Ma, X.-T.; Dai, R.-H.; Zhang, J.; Gu, Y.; Tian, S.-K. Adv. Synth. Catal. 2014, 356, 2984.
(b) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649.
(c) Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L.-B. Green Chem. 2018, 20, 3408.
(d) Ma, X.; Su, C.; Xu, Q. Top. Curr. Chem. 2016, 374, 27.
[12] Kaszynski, P.; Friedli, A. C.; Michl, J. J. Am. Chem. Soc. 1992,114, 601.
[13] Liu, H.-J.; Wynn, H. Tetrahedron Lett. 1982, 23, 3151.

文章导航

/